

Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust

Wollam Park, St Albans

Flood Risk Assessment and Drainage Strategy

December 2024

Project Code: 05920

Document Ref: 05920-FRA-002

PJA Park Point 17 High Street Longbridge B31 2UQ UK pja.co.uk

Version Control and Approval

Version	Date	Main Contributor	Issued by	Approved by
PO	08 November 2024	Charlotte Turner	Samantha Furey	Greg Dobbins
P1	28 th November 2024	Samantha Furey	Samantha Furey	Greg Dobbins
P2	5 th December 2024	James Greenwood	Samantha Furey	Samantha Furey
Р3	11 th December 2024	Samantha Furey	Samantha Furey	Samantha Furey
P4	7 th February 2024	James Greenwood	Samantha Furey	Samantha Furey

Purpose

This document has been prepared for Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust.

PJA Civil Engineering Limited accepts no responsibility or liability for any use that is made of this document other than by the Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust for the purposes for which it was originally commissioned and prepared.

The conclusions and recommendations contained herein are limited by the availability of background information and the planned use for the Site.

Third party information has been used in the preparation of this report, which PJA Civil Engineering Ltd, by necessity assumes is correct at the time of writing. Whilst all reasonable checks have been made on data sources and the accuracy of the data, PJA Civil Engineering Ltd accepts no liability for same.

PJA Civil Engineering Ltd. has no liability regarding the use of this report except to Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust.

CDM

The revised Construction (Design and Management) Regulations 2015 (CDM Regulations) came into force in April 2015 to update certain duties on all parties involved in a construction project, including those promoting the development. One of the designer's responsibilities under clause 9 (1) is to ensure that the client organisation, in this instance Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust, is made aware of their duties under the CDM Regulations.

Copyright

© PJA Civil Engineering Ltd 2025.

Contents

Section

Page

I	Executive Summary	I
2	Introduction	3
3	Site Details	4
4	Planning Context	13
5	Assessment of Flood Risk	20
6	Surface Water Drainage Strategy	31
7	Foul Water Drainage Strategy	44
8	Conclusion & Recommendations	.49

Appendices

Appendix A	Topographic Survey	51
Appendix B	Infiltration Testing	52
Appendix C	Thames Water Asset Mapping	53
Appendix D	Proposed Landscape Framework Plan	54
Appendix E	Pre-Application Correspondence	55
Appendix F	Drainage Strategy Drawings	56
Appendix G	Surface Water Drainage Calculations	57
Appendix H	Thames Water Developer Enquiry	58
Appendix I	Flow Exceedance Plan	59

I Executive Summary

- 1.1.1 PJA has been commissioned by Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust to prepare a Flood Risk Assessment (FRA) and Drainage Strategy to support a planning permission to be sought for the following development:
 - (1) Relocation and replacement of existing playing fields and erection of pavilion annex; and
 - (2) Construction of up to 1000 new homes (Use Class C3) to include a mix of market housing, affordable housing, age restricted specialist accommodation for the elderly, adult disability service units; a care home (Use Class C2); a local centre (Use Classes E and F); a primary school (Use Class F); the laying out of green infrastructure including habitat creation; drainage infrastructure; earthworks; pedestrian and cycle routes; new means of access and alterations to existing accesses.
- 1.1.2 The application is submitted as a "hybrid" application. Part (1) is submitted as a full application. Part (2) is submitted as an outline application with approval of means of access sought at the present time, and all other reserved matters to be approved at a later date.
- 1.1.3 The application will be submitted in "outline" with all matters reserved for future consideration save for:
 - The proposed means of "access" on to Harpenden Road (A1081), Sandridgebury Lane and Valley Road;
 - The proposed "access", "appearance", "landscaping", "layout" and "scale" (TBC) of the proposed playing fields on land to the east of the existing Woollam Playing Fields.

Overview	
Site Location	Woollam Park, Land off Harpenden Road, St Albans
Development Proposal	Residential-led development
Environment Agency Flood Zone(s)	Flood Zone 1
Vulnerability Classifications(s)	More Vulnerable and Less Vulnerable
Fluvial Flood Risk	Very Low
Tidal Flood Risk	Very Low
Surface Water Flood Risk	Medium
Groundwater Flood Risk	Low to Medium
Sewer Flood Risk	Low
Canal Flood Risk	Very Low
Reservoir Flood Risk	Very Low
Surface Water Drainage	The surface water drainage strategy will sustainably manage all storm events up to and including the 1 in 100-year plus 40% climate change event. This will be achieved via a network of sustainable drainage systems (SuDS), before discharging via infiltration at a rate of 1.88×10^{-5} m/s.

Table 1-1: Executive Summary Table

Hallam Land Management Limited, St Albans School and 1 St Albans School Woollam Trust Wollam Park, St Albans

Flood Risk Assessment and Drainage Strategy

Overview	
Foul Water Drainage	Foul water flows will drain via gravity to the proposed pumping station within
	the Site. Foul water will then be pumped from the proposed Type 3 pumping
	station to the north west of the Site into Thames Water Manhole MH8702.

2

2 Introduction

2.1 Terms of Reference

2.1.1 PJA has been commissioned by Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust to prepare a Flood Risk Assessment (FRA) and Drainage Strategy for a proposed residential-led development at *Woollam Park, St Albans* (herein referred to as 'the Site').

2.2 Scope of works

Flood Risk Assessment (FRA)

2.2.1 This FRA provides information on the nature of identified potential flood risk at the Site and follows government guidance regarding development and flood risk in line with the National Planning Policy Framework (NPPF) and supporting Planning Practice Guidance (PPG).

Drainage Strategy

- 2.2.2 The surface water drainage strategy aims to sustainably manage surface water from the Site and has been developed largely in accordance with current sustainable development best practices and the specific requirements of Hertfordshire County Council as the Lead Local Flood Authority (LLFA).
- 2.2.3 A high-level foul water drainage strategy has also been developed for the proposed development Site which aims to address the requirements of Thames Water as the sewerage undertaker.

2.3 Information Sources

- 2.3.1 This report comprises a review of readily available public information and other relevant information obtained from the following sources:
 - Environment Agency (EA);
 - British Geological Survey (BGS);
 - Cranfield Soil and Agrifood Institute Soilscapes;
 - DEFRA Magic Mapping;
 - St Albans City & District Council;
 - Hertfordshire County Council;
 - Thames Water

3 Site Details

3.1 Site Description

- 3.1.1 The Site, which is the focus of this FRA, is mostly greenfield (undeveloped) in nature and is currently used for agricultural purposes. A small percentage of the site, adjacent to Harpenden Road, is currently used as Rugby Football playing fields.
- 3.1.2 The Site is bound to the A1081 (Harpenden Road) to the west, beyond which lies existing residential development. Agricultural fields bound the Site to the north of the proposed development, with an existing railway line running along the northeastern boundary of the Site. Furthermore, existing commercial development is situated to the south of the Site, beyond which lies existing residential development.
- 3.1.3 The Site's OS co-ordinates are 515676, 210075.
- 3.1.4 A Site location plan is available in Figure 3-1 and Table 3-1.

Figure 3-1:Site Location

4 Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust

Wollam Park, St Albans

Table 3-1: Summary of Site

Site Address	Woollam Park, St Albans
Existing Land use	Greenfield
Proposed Development Type	Residential-led Development
Site Area	50.17ha
OS Co-ordinates	515676, 210075
County	Hertfordshire
Local Planning Authority	St Albans City and District Council
Lead Local Flood Authority	Hertfordshire County Council
Local Water Authority	Thames Water

3.2 Site Topography

- 3.2.1 From a review of publicly available Site Topographic Survey, the Site generally falls from north west to south east, ponding in a localised depression. The highest elevation within the Site is approximately 124.9mAOD and is situated to the north west of the development. The lowest elevation within the Site is approximately 102.45mAOD and is situated to the southeast of the development.
- 3.2.2 The Site Topographic Survey is available in Appendix A.
- 3.2.3 A representation of the Site topography is illustrated in Figure 3-2, utilising the publicly available 1m DTM LiDAR.

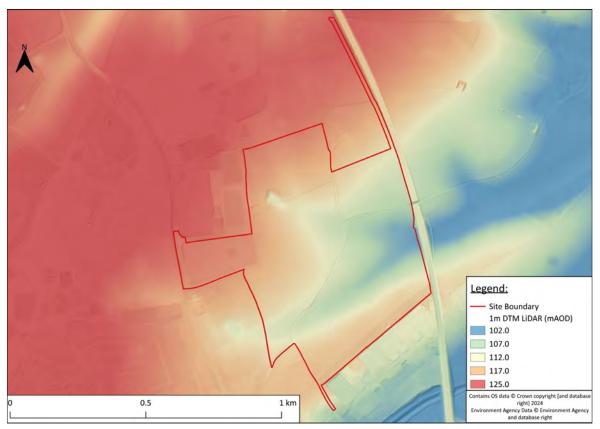
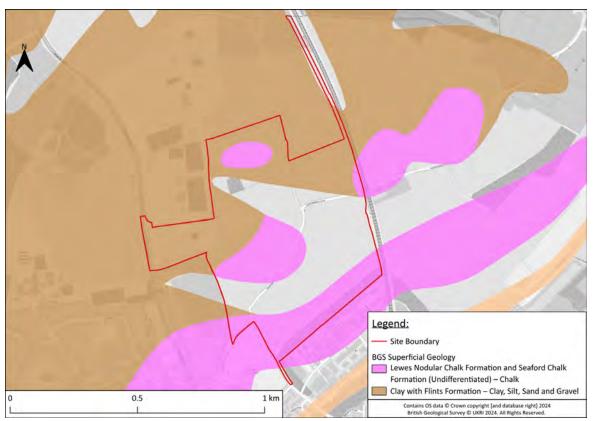


Figure 3-2: 1m DTM LiDAR

3.3 Ground Conditions

BGS Mapping

- 3.3.1 From a review of the publicly available Geological Survey (BGS) Geology of Britain Viewer¹, the Site is identified to be underlain by a bedrock geology of Lewes Nodular Chalk Formation and Seaford Chalk Formation (Undifferentiated) Chalk.
- 3.3.2 Furthermore, the Site is underlain by two types of superficial deposits. Kesgrave Catchment Subgroup Sand and Gravel is situated to the north, west and south of the Site, with Clay with Flints Formation Clay, Silt, Sand and Gravel situated to the north west.
- 3.3.3 An extract of the BGS Superficial Geology is illustrated within Figure 3-3.


https://www.bgs.ac.uk/discoveringGeology/geologyOfBritain/viewer.html

Wollam Park, St Albans

6 Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust

¹British Geological Survey. Geology of Britain Viewer.

Figure 3-3: BGS Superficial Geology

Cranfield Soilscape Viewer

3.3.4 The Cranfield University Soilscape viewer² describes the soils as 'Slightly acid loamy and clayey soils with impeded drainage.'

Hydrogeology

- 3.3.5 The publicly available DEFRA Magic Mapping³, Bedrock Aquifer Designation Map shows that the Site is underlain by a Principal Aquifer which is defined as "Aquifers which provide significant quantities of drinking water, and water for business needs. They may also support rivers, lakes and wetlands."
- 3.3.6 The publicly available DEFRA Magic Mapping, Superficial Aquifer Designation Map shows that the Site is underlain by a Secondary A Aquifer which is defined as "Aquifers comprising of permeable layers that can support local water supplies, and may form an important source of base flow to rivers."

²Cranfield Soil and Agrifood Institute. Soilscape Viewer. <u>http://www.landis.org.uk/soilscapes/</u> ³ DEFRA Magic Map <u>https://magic.defra.gov.uk/MagicMap.aspx</u>

Hallam Land Management Limited, St Albans School and 7 St Albans School Woollam Trust

3.3.7 The Site is situated within a 'Total Catchment, Groundwater Source Protection Zone (III)', denoting that the groundwater underlying the Site supports a nearby abstraction point. Given this, the Environment Agency may apply certain conditions on the water quality of surface water discharge to ground.

Site Specific Ground Investigation

- 3.3.8 Preliminary infiltration testing at the Site was undertaken by Geo Environmental Group in July 2024 to understand whether an infiltration-led surface water drainage strategy could be utilised.
- 3.3.9 Seven trial pits across the Site were explored to understand infiltration rates. The preliminary infiltration results at IT01 to IT07 are shown in Table 3-2 and are available in Appendix B.

Location	Depth Range of Test (m)	Time (Mins)	Infiltration Rate (m/s)
	1.30-2.40	115	2.96X10 ⁻⁵
IT01	1.05-2.08	132	2.63X10 ⁻⁵
	1.01-1.82	119	2.97X10 ⁻⁵
IT02	1.00-2.00	217	N/A
IT03	1.45-2.75	194	N/A
IT04	1.20-2.00	105	2.60X10 ⁻⁵
	1.00-1.75	165	1.88X10 ⁻⁵
IT05	1.40-2.40	201	N/A
IT06	1.80-2.80	195	N/A
IT07	1.40-2.50	183	N/A

Table 3-2: Summary of Preliminary Infiltration Test Results

- 3.3.10 After a review of the preliminary infiltration results recorded by Geo Environmental Group, no infiltration results could be recorded at trial pits IT02, IT03, IT05, IT06 and IT07. It was noted that infiltration was viable on-Site at test locations IT01 and IT04.
- 3.3.11 As such, the use of traditional soakaways is considered to be a feasible means of surface water drainage at the Site at locations ITO1 and ITO4 only. This may be subject to any underlying restrictions due to the presence of the aquifer referred to previously.

3.4 Existing Hydrological Regime

- 3.4.1 From a review of the existing hydrological regime at St Albans, no hydrological features have been recorded within the Site Boundary. It is understood that existing surface water runoff is discharged via infiltration to the east, via the underlying chalk geology.
- 3.4.2 The River Ver is located approximately 2.80km west of the Site.
- 3.4.3 The existing hydrological regime is illustrated in Figure 3-4.

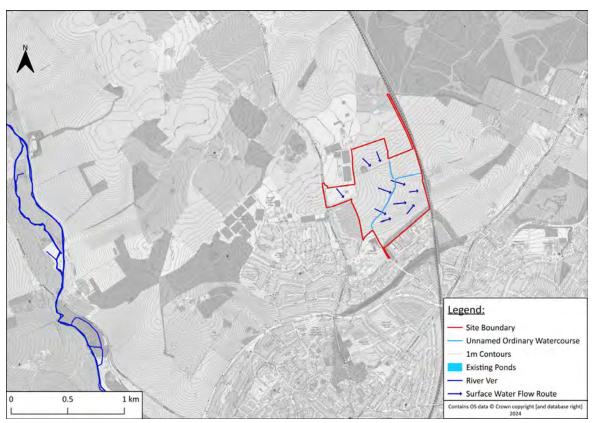


Figure 3-4: Existing Hydrological Regime

3.5 Existing Drainage Assets

- 3.5.1 From a review of the existing Thames Water sewer asset mapping, a 225mm diameter combined sewer bisects the Site to the north west before flowing south westerly along Harpenden Road see Figure 3-5 overleaf.
- 3.5.2 Furthermore, an existing 300mm diameter surface water sewer is situated to the west of the Site, along Harpenden Road.
- 3.5.3 Further utilities surveys have been undertaken to understand any additional existing utilities present on-Site and are included in the Brookbanks report which forms part of the planning submission pack.
- 3.5.4 Existing Thames Water sewer asset mapping is available within Appendix C and an extract is included within Figure 3-5.

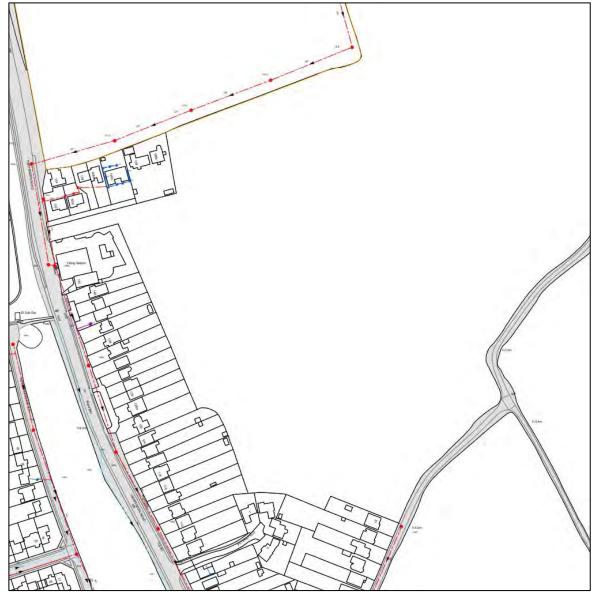


Figure 3-5: Thames Water Asset Mapping Extract

3.6 Site Proposals

- 3.6.1 The Site proposal consists of a planning application for the following development:
 - 1 Relocation and replacement of existing playing fields and erection of pavilion annex; and
 - 2 Construction of up to 1000 new homes (Use Class C3) to include a mix of market housing, affordable housing, age restricted specialist accommodation for the elderly, adult disability service units; a care home (Use Class C2); a local centre (Use Classes E and F); a primary school (Use Class F); the laying out of green infrastructure including habitat creation; drainage

infrastructure; earthworks; pedestrian and cycle routes; new means of access and alterations to existing accesses.

- 3.6.2 The application is submitted as a "hybrid" application. Part (1) is submitted as a full application. Part (2) is submitted as an outline application with approval of means of access sought at the present time, and all other reserved matters to be approved at a later date.
- 3.6.3 It is noted that the Site has been allocated within the Draft St Albans City & District Council (Regulation 19) Local Plan 2041 under Strategic Policy SP1-B1.
- 3.6.4 The Proposed Landscape Framework Plan is available in Appendix D and an extract is shown in Figure 3-6 below.

Figure 3-6: Woollam Park, North St Albans Proposed Landscape Framework Plan

4 Planning Context

4.1 National Planning Policy Framework

- 4.1.1 The revised National Planning Policy Framework (NPPF) was published by the Ministry of Housing, Communities and Local Government and most recently updated in December 2023. The NPPF's Planning Practice Guidance (PPG) supports the Framework and is an online resource that is frequently updated.
- 4.1.2 Paragraph 173 of the NPPF identifies that Local Planning Authorities should ensure that flood risk is not increased elsewhere by development and where appropriate, applications should be supported by a Site-specific Flood Risk Assessment. Development should only be allowed where it can be demonstrated that:
 - a within the site, the most vulnerable development is located in areas of lowest flood risk, unless there are overriding reasons to prefer a different location;
 - b the development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
 - c it incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
 - d any residual risk can be safely managed; and
 - e safe access and escape routes are included where appropriate, as part of an agreed emergency plan.
- 4.1.3 Further to this, paragraph 175 of the NPPF sets out that major development should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:
 - a take account of advice from the lead local flood authority;
 - b have appropriate proposed minimum operational standards;
 - c have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
 - d where possible, provide multifunctional benefits.
- 4.1.4 A sequential approach has been taken to the proposed development in relation to flood risk which is set out in Section 5.11 of this report. Flood risk from all sources is reviewed in Section 5 and the approach to surface water management in Section 6.

1.1.1

Hallam Land Management Limited, St Albans School and 13 St Albans School Woollam Trust

4.2 Local Policy & Guidance

4.2.1 St Albans City District Council Plan 1994

- 4.2.2 The St Albans City District Council Local Plan was adopted in 1994 and includes strategic policies and proposals on where new development will be provided by the district.
- 4.2.3 A revised Local Plan is currently being developed by the council to replace the adopted 1994 Plan for St Albans City. It should be noted that Local Plans "expired" after 27th September 2007 unless "saved", in whole or in part. As such, St Albans City District Council saved specific policies from the existing 1994 Adopted Local Plan, to ensure development was saved across the council boundary. The Adopted Local Plan was revised in July 2020, demonstrating the saved policies, direction and correction which will drive the revised Local Plan which is currently at Regulation 19 status.
- 4.2.4 Policy 84 details the requirements for Flooding and River Catchment Management, stating new development should be steered towards low risk areas and not increase the risk of flooding to third-party land. A protective strip should be provided along the watercourse to ensure maintenance of the hydrological feature can be undertaken. Furthermore, it should be noted that if works to a watercourse need to be undertaken due to the proposed development, culverting of the hydrological feature should be avoided as far as possible.
- 4.2.5 Policy 84A details the requirements of Drainage Infrastructure, stating new development will not be permitted in areas which are considered to be at risk of flooding from sewers or may increase the risk of sewerage flooding to third-party land. A detailed drainage strategy should be provided as part of the planning submission.
- 4.2.6 To demonstrate compliance with the requirements set out in local policy, new development will be situated outside of high flood risk areas, ensuring a suitable surface water drainage strategy has been developed alongside the masterplan.

St Albans City & District Council Draft Local Plan (Regulation 19) 2041

- 4.2.7 The St Albans City & District Council Draft Local Plan (Regulation 19) was published in September 2024 and sets out requirements for development within the district up to 2041.
- 4.2.8 Policy NEB8 details the requirements of Managing Flood Risk within the district. New development needs to meet the requirements of the Sequential and Exception Tests in accordance with national policy, with a Flood Risk Assessment undertaken in accordance with advice from the Environment Agency (if applicable) or Lead Local Flood Authority.
- 4.2.9 Where the Sequential and Exception Tests have been applied, proposals located within areas identified as being at risk of flooding will not be permitted unless the following is demonstrated:

- That the most vulnerable development within the site is located in areas of lowest risk;
- That all sources of flood risk are considered, including fluvial and surface water flood risk;
- The development is appropriately flood resistant and resilient and incorporates appropriate infrastructure to address the increasing potential for flood events due to Climate Change;
- The flood risk will not be increased elsewhere and, where possible, reduce flood risk offsite;
- How the proposal incorporates sustainable drainage systems;
- How any residual risk can be safely managed; and
- That safe access and egress routes are included where appropriate and have an agreed emergency plan.
- 4.2.10 Furthermore, the policy states that all major new development should incorporate sustainable drainage systems (SuDS) and manage surface water runoff to achieve greenfield runoff rates. Management and maintenance plans for the proposed SuDS, with appropriate contributions sought where necessary will need to be provided.
- 4.2.11 Given this, a detailed review of flood risk and drainage at the Site is set out in Section 5 and 6 of this report.

South West Hertfordshire Level 1 Strategic Flood Risk Assessment (October 2018)

- 4.2.12 A Level 1 Strategic Flood Risk Assessment (SFRA) was published in October 2018 by South West Hertfordshire Councils (Dacorum Borough Council, St Albans City and District Council, Three Rivers District Council and Watford Borough Council) and was created with the purpose of providing a comprehensive and robust evidence to support the production of Local Plans for the four councils.
- 4.2.13 Appendix A of the South West Hertfordshire Level 1 SFRA contains mapping which includes 'Groundwater Flood Risk Mapping'. The Site at St Albans illustrates groundwater flood risk to be at least 5m below ground level to the west and between 0.5-5.0m below ground level to the east.
- 4.2.14 The Level 1 SFRA states that historic sewer flooding has been recorded within St Albans. Thames Water sewer records documented within the report shows 4 recorded flood incidents within the AL3 6 (St Albans City) postcode.
- 4.2.15 Given this, a detailed review of flood risk at the Site is set out in Section 5 of this report.

South West Hertfordshire Level 1 Strategic Flood Risk Assessment Addendum (July 2024)

4.2.16 A Level 1 Strategic Flood Riks Assessment Addendum was published by South West Hertfordshire Councils (Dacorum Borough Council, St Albans City and District Council, Three Rivers District Council

and Watford Borough Council) in July 2024 to support the revised St Albans City & District Council Local Plan and associated Planning Policy documents.

- 4.2.1 The Level 1 SFRA Addendum states that historic sewer flooding has been recorded within St Albans. Thames Water sewer records documented within the report shows 4 recorded flood incidents within the AL3 6 (St Albans City) postcode.
- 4.2.2 Appendix K of the South West Hertfordshire Level 1 SFRA contains mapping which includes 'Groundwater Flood Risk Mapping'. The Site at St Albans illustrates groundwater flood risk to be at least 5m below ground level to the west and between 0.5-5.0m below ground level to the east.
- 4.2.3 Given this, a detailed review of flood risk at the Site is set out in Section 5 of this report.

St Albans Level 2 Strategic Flood Risk Assessment (July 2024)

- 4.2.4 A Level 2 Strategic Flood Risk Assessment (SFRA) was published in July 2024 by St Albans City and District Council and was created with the purpose of supporting the production of the St Albans City and District Local Plan.
- 4.2.5 The Site is not identified within the Level 2 Strategic Flood Risk Assessment even though the Site has been draft allocated under the St Albans City & District Council Draft Local Plan (Regulation 19) 2041.
- 4.2.6 As such, a detailed review of flood risk at the Site is set out in Section 5 of this report.

Hertfordshire County Council Local Flood Risk Management Strategy 2 (LFRMS2)

- 4.2.7 The Hertfordshire County Council Local Flood Risk Management Strategy was approved by the county council in February 2013 following the establishment of the Lead Local Flood Authority in May 2010. As such, the LLFA have published the Hertfordshire Local Flood Risk Management Strategy 2 to include updated information in relation to flood risk.
- 4.2.8 The Hertfordshire Local Flood Risk Management Strategy 2 states that 3,667 properties are at high flood risk (1 in 30-year even) from surface water flooding in St Albans, with 7,661 properties being at medium risk (1 in 100-year event). It should be noted that the exact location of these properties is unknown.
- 4.2.9 To further understand flood risk to the Site, a detailed assessment is available in Section 5 of this report.

4.3 Consultation

4.3.1 Pre-application consultation has been undertaken with key stakeholders in relation to flood risk and drainage. A summary of their responses has been provided below and full responses included within Appendix E

Hertfordshire County Council Lead Local Flood Authority

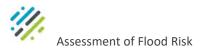
- 4.3.2 Hertfordshire County Council were consulted in their role as the Lead Local Flood Authority (LLFA) to determine if there was any flood risk information available for the Site. Pre-Application advice was received on the 20th August 2024, detailing historic flood risk information and Site-specific comments for the draft allocation of North St Albans, and are as follows;.
- 4.3.3 The Site is at high flood risk from surface water in the high-risk scenario (more than 3.33% chance of flooding each year) showing 30cm-90cm of flooding from two distinct surface water flow paths travelling west to east. As such, a sequential test will be needed at the Site to consider all sources of flood risk.
- 4.3.4 Surface water flow route modelling should be undertaken to inform development areas available at the Site and enhance the proposed surface water drainage strategy. The drainage from the railway line should be considered at the Site as whilst on an embankment, a drainage channel may exist along the toe of it. The existing roads should be considered at 100% impermeable area and assume to have no drainage, in a surface water model, to show if this creates its own flood risk.
- 4.3.5 Furthermore, groundwater monitoring (at least covering February, March and April) and an overview of the long-term maximum regional groundwater level should be included within the provided Flood Risk Assessment submitted via planning.
- 4.3.6 Access roads will need to be located outside any flood extent and where this is not possible, it will need to be demonstrated in accordance with the flood risk assessment guidance for new developments and the hazard calculations in FD2320. (NPPF PPG Paragraph 005).
- 4.3.7 The type and location of SuDS should be considered at an early stage of the planning process and include any urban spatial typologies that may be developed such as tree pits. The proposed surface water drainage strategy should comply with the four pillars of sustainable urban drainage systems (SuDS) of Water Quality, Water Quantity, Amenity and Biodiversity.
- 4.3.8 The regulations of the Source Protection Zone (SPZ III) is required to be considered in the proposed drainage for the Site and additional treatment steps be implemented where necessary (refer to the EA guidance if required). This would include how unknown pollution potential from off-site runoff

may need to be treated. Accepting runoff generated offsite may affect the adopting bodies of the SuDS. This should be explored at an early stage.

- 4.3.9 The LLFA expect investigation into infiltration to be undertaken in accordance with the BRE 365 methods (or equivalent) as not all the previous tests were undertaken to this standard. The worst infiltration rate calculated must be used in all drainage supporting calculations. Groundwater monitoring will be required to demonstrate the seasonally high groundwater level in the area and at least 1m of unsaturated zone be provided to the base of the infiltration structure.
- 4.3.10 Management and Maintenance easements should be included for all SuDS features an overview of the land take required to provide maintenance access should be considered at an outline stage (e.g. maintenance strips around ponds).
- 4.3.11 To demonstrate compliance with the requirements set out in local policy, SuDS have been incorporated within the surface water drainage strategy, taking into account water quality, water quantity, amenity and biodiversity. The worst case infiltration rate has been utilised for the Site-wide strategy, with groundwater monitoring proposed to be undertaken throughout the winter months.

Environment Agency

- 4.3.12 The Environment Agency were consulted regarding flood risk to the Site via a Product 4, 5, 6 and 7 request. A response was received in January 2024, with the Environment Agency stating that no detailed hydraulic modelling information was available due to the Site not being situated within an area at risk from fluvial flooding.
- 4.3.13 Furthermore, the Environment Agency were contacted in May 2024 in regard to the Site being situated within Groundwater Source Protection Zone III. The provided guidance suggested that rainfall draining from roofs and areas of hardstanding could discharge via infiltration, assuming the following:
 - Infiltration sustainable drainage systems (SuDS) are suitably designed.
 - Infiltration SuDS meet the Government's non-statutory technical guidance for SuDS Sustainable Drainage Systems: Non-statutory technical standards for sustainable drainage systems (publishing.service.gov.uk). The CIRIA SuDS manual is (C753) is also a useful resource and is available via the CIRIA website (ciria.org);
 - The surface water drainage scheme incorporates a SuDS management treatment train that is, use drainage components in series to achieve a robust surface water management system that does not pose an unacceptable risk of pollution to groundwater;


- The surface water originates from areas where no potentially contaminative activities have occurred and is free from hazardous substances as per the current list of confirmed hazardous substances to groundwater (2018 01 31 Confirmed hazardous substances list_0.pdf (wfduk.org)). Please note that surface water discharges from heavily trafficked areas and areas where vehicles are stored may contain hazardous substances and the expectation is that the SuDS scheme for the site will incorporate pollution control features that would prevent hazardous contaminants entering the infiltration point (see bullet point above).
- The discharge point cannot be direct to groundwater (i.e. via a borehole that penetrates to water table). The applicant will need to provide confidence that the infiltration point has been designed to be as shallow as possible to retain the beneficial filtration effects of soils in the unsaturated zone above the permanent water table and present no risk to aquifers.
- 4.3.14 Given that the above can be satisfied, the Environment Agency do not feel that an environmental permit for infiltration of surface water would be required at the Site.

4.3.15 Affinity Water

4.3.16 Affinity Water are the local water supplier and as such were consulted in regard to the Site being situated within Groundwater Source Protection Zone III. A response was received on the 19th June 2024, confirming that the location of the Site is situated outside of Source Protection Zone 2, and therefore no particular requirements on water abstraction and supply will be provided specifically. It is recommended that best practice is undertaken to protect the water quality in the environment and the Environment Agency are contacted.

4.3.17 Thames Water

4.3.18 Thames Water were consulted in regard in foul water drainage at the Site. A response was received via a pre-planning enquiry dated 7th October 2024 stating that the existing sewerage network will not have enough capacity for full development at the Site. As such, sewerage hydraulic modelling will need to be undertaken to understand the existing capacity available and the upgrades required to facilitate the development.

5 Assessment of Flood Risk

5.1.1 The flood risk to and from the Site has been assessed based on a review of publicly available information (e.g., Environment Agency flood data). A summary of the flood risk at the Site is provided in Table 5-1 and discussed in more detail in the chapter below.

Source of Flooding	On Site Presence	
Fluvial	×	
Surface Water	\checkmark (section 5.5)	
Tidal	×	
Groundwater	×	
Sewers	×	
Reservoirs	×	
Canal	×	

Table 5-1: Potential Sources of Flood Risk

5.2 Historic Flooding

- 5.2.1 Appendix A of the South West Hertfordshire Level 1 SFRA contains mapping which includes 'Groundwater Flood Risk Mapping'. The Site at St Albans illustrates groundwater flood risk to be at least 5m below ground level to the west and between 0.5-5.0m below ground level to the east.
- 5.2.2 The Level 1 SFRA states that historic sewer flooding has been recorded within St Albans. Thames Water sewer records documented within the report shows 4 recorded flood incidents within the AL3 6 (St Albans City) postcode.
- 5.2.3 The Environment Agency's Historic Flood Mapping shows no historical flood events recorded within the vicinity of the Site.

5.3 Fluvial Sources

- 5.3.1 The Environment Agency, through the publicly available Flood Map for Planning service, categorises potential fluvial flood risk into Flood Zones, assuming no flood defences, which provides the basis for the assessment of flood risk and development suitability under the NPPF.
- 5.3.2 The Site is identified in the publicly available Flood Map for Planning as located wholly within Flood Zone 1, demonstrating that the fluvial flood risk is considered to have a less than 0.1% Annual Exceedance Probability (AEP) (1 in 1,000-Year Event).
- 5.3.3 An extract of the Flood Map for Planning is contained in Figure 5-1.

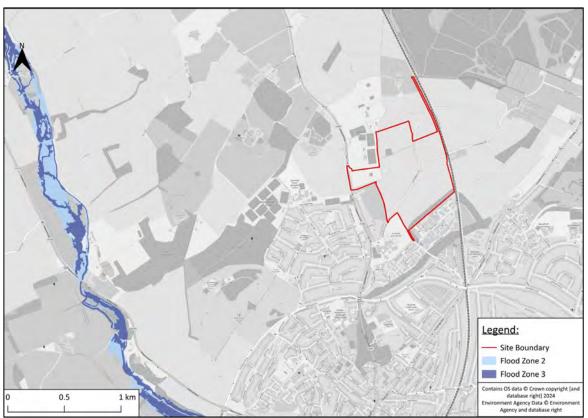


Figure 5-1: Publicly Available Flood Map for Planning Extract

5.4 Tidal Sources

5.4.1 Given the in-land location of the Site, flood risk from this source is considered very low.

5.5 Surface Water Sources

- 5.5.1 Surface water runoff is likely to occur after heavy rainfall. Currently, there is no formal means of surface water drainage that has been identified to positively drain the Site and as such, water will runoff with the natural topography in a south easterly direction towards the boundaries of the Site.
- 5.5.2 The Long-Term Flood Risk Information, Flood Risk from Surface Water Map identifies that majority of the Site is at very low risk of surface water flooding. It is noted that low, medium and high surface water flow routes bisect the Site centrally, before ponding along the eastern boundary.
- 5.5.3 An extract of the Long-Term Flood Risk, Flood Risk from Surface Water mapping is provided in Figure 5-2.

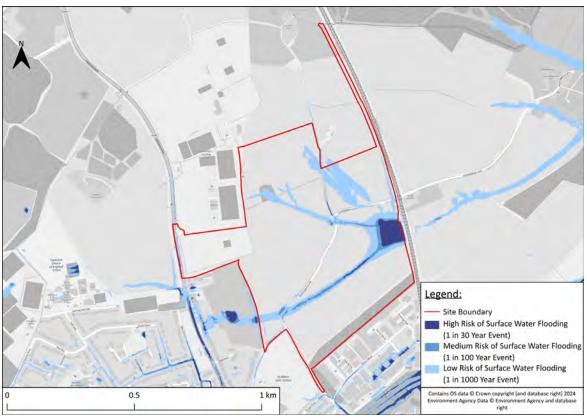


Figure 5-2: Long Term Flood Risk – Surface Water Mapping Extract

- 5.5.4 The production of this mapping has been undertaken at a national scale to provide the first publicly available generation of surface water flood risk mapping. The two previous generations were primarily developed for regulator use as the approach and risk was refined. For example, the first did not include any allowance for sewers, whilst the second incorporated a national loss coefficient.
- 5.5.5 Although this generation incorporates local estimates of the sewer infiltration loss, generally at a LLFA level along with various other refinements in runoff estimation, it does not allow for local improvements to the underlying Digital Terrain Model (DTM). This means that local features such as the adjoining highways are represented as determined from the LiDAR without any consideration to surface water drainage features such as culverts or small watercourses which typically provide the associated surface water drainage.
- 5.5.6 As part of the final Site design, measures will be implemented to ensure there is negligible increase in surface water flood risk on- and off-Site and ensure that exceedance flows will be directed away from property.
- 5.5.7 Baseline hydraulic modelling has been undertaken to refine the surface water flow path shown on the existing publicly available long term flood risk mapping. The baseline mapping is reflective of the public mapping; however, it does indicate a reduced extent in the 1 in 1000-year event, due to

the greater accuracy available from the utilisation of the topographical survey and ground condition information. Further hydraulic modelling will be undertaken to ensure that flood risk will be retained and controlled within the landscape corridors, public open spaces, and strategic SuDS network throughout the proposed development.

5.6 Groundwater Sources

- 5.6.1 Groundwater flooding is typically caused by high groundwater levels. It occurs where excess water emerges at the ground surface via springs or within manmade structures such as basements. The risk of groundwater flooding depends on the nature of the geological strata underlying the Site, as well as on the local topography.
- 5.6.2 Appendix A of the South West Hertfordshire Level 1 SFRA contains mapping which includes 'Groundwater Flood Risk Mapping'. The Site at St Albans illustrates groundwater flood risk to be at least 5m below ground level to the west and between 0.5-5.0m below ground level to the east.
- 5.6.3 From a review of the BGS Geoindex, there are no public borehole records identified within the Site at St Albans. The nearest trial pit (TL10NW38) is situated approximately 1.3km to the west of the Site and was dug to approximately 2.0m below ground level (bgl). The records demonstrate that no groundwater was encountered at this location as part of the exploration.
- 5.6.4 Groundwater monitoring is currently being undertaken across the Site to further understand groundwater flood risk and inform the proposed surface water drainage strategy. Groundwater monitoring will be undertaken at the Site until March 2025.
- 5.6.5 The following table provides a summary of the groundwater levels which have been recorded during the ongoing groundwater monitoring:

Date	WS01	WS02	WS03	WS04	WS05	WS06	WS07
09/05/24	Damp at 5.0	Dry	Dry	0.53	Dry	Damp at 5.0	N/A
11/06/24	Damp at 5.0	Dry	Damp at 5.0	1.34	1.20	Dry	N/A
04/07/24	Dry	Dry	5m	1.90	1.58	Dry	N/A
21/08/24	Damp at 5.0	Dry	Dry	Damp at 1.9	Damp at 1.9	Dry	Dry
25/09/24	Damp at 5.0	Dry	Dry	0.00	0.00	Damp at 5.0	N/A
23/10/24	Dry	Dry	1.01	0.52	0.52	Dry	N/A

Table 5-2: Groundwater Level Monitoring

5.6.6 Given the results from the ongoing groundwater monitoring, flood risk from groundwater may be considered to be at low to medium risk.

5.7 Sewer Sources

- 5.7.1 As set out in Section 3.5, the Thames Water asset mapping indicates that an existing 225mm diameter foul water sewer bisects the Site to the north west before flowing south westerly along Harpenden Road.
- 5.7.2 Sewer asset mapping indicates an existing 300mm diameter surface water sewer is situated to the west of the Site along Harpenden Road.
- 5.7.3 The Level 1 SFRA states that historic sewer flooding has been recorded within St Albans. Thames Water sewer records documented within the report shows 4 recorded flood incidents within the AL3 6 (St Albans City) postcode. The exact locations of these recordings is unknown due to confidentiality.
- 5.7.4 Thames Water were consulted in regard in foul water drainage at the Site. A response was received via a pre-planning enquiry dated 7th October 2024 stating that the existing sewerage network will not have enough capacity for full development at the Site. As such, sewerage hydraulic modelling will need to be undertaken to understand the existing capacity available and the upgrades required.
- 5.7.5 As a result of the review of the of the existing sewer sources currently within the area, the Site may be considered to be at low risk of sewer flooding.

5.8 Sources of Reservoir Failure

- 5.8.1 The publicly available Long-Term Flood Risk, Information, Flood Risk from Reservoirs Mapping identifies that the Site lies outside the maximum extent of flooding from reservoirs.
- 5.8.2 Given this, flood risk from reservoirs may be considered to be very low.

5.9 Canal Sources

- 5.9.1 Flooding from canals is a much less common occurrence than fluvial flooding due to the managed nature of water levels within the artificial waterways. the canal network is designed in such a way so as to direct all additional water beyond the navigation capacity to impounding areas or surrounding watercourses to be conveyed downstream. The risk from canal flooding becomes more of a concern where the structure is elevated on an earth embankment and if there is a rare instance of a catastrophic breach, leading to a sudden drain-down of the pound and resultant overland flow flood risk to development immediately downstream.
- 5.9.2 There are no canals within the vicinity of the Site.
- 5.9.3 Given this, flood risk from canals may be considered to be very low.

5.10 Climate Change

- 5.10.1 In accordance with the NPPF and supporting Planning Practice Guidance an FRA should demonstrate how flood risk will be managed now and over the development's lifetime, taking climate change into account. Climate change will affect peak river flows and, consequently, the extent of fluvial flooding is likely to increase in the future.
- 5.10.2 On 19th February 2016, the Environment Agency released updated guidance on climate change allowances⁴ to support the NPPF, which was later revised for peak river flows in 2021 and for peak rainfall intensity in 2022.
- 5.10.3 Table 5-3 shows the peak river flows for the Colne Management Catchment Peak River Flow Allowances in which St Albans is situated.

	Central	Higher	Upper
2020s	10%	16%	30%
2050s	8%	16%	38%
2080s	21%	35%	72%

5.10.4 The peak rainfall intensity allowances for the Colne Management Catchment have also been reviewed, as detailed for the 1% annual exceedance rainfall event within Table 5-4.

Table 5-4: Colne Management Catchment Peak Rainfall Allowances (1% AEP)

	Central	Upper
2050s	20%	40%
2070s	25%	40%

- 5.10.5 The proposed development and associated surface water drainage scheme has therefore been designed to sustainably manage the run-off from the critical 1 in 100 year storm event with a 40% allowance for climate change.
- 5.10.6 Consideration to the potential impact of climate change has been given in the proposed development, in particular with regard to locating built development outside of the maximum flood extents in climate change scenarios and exceedance flow routing, therefore potential flood risk from climate change may be considered to be low.

⁴ Flood risk assessments: climate change allowances. Environment Agency 2016. <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances</u>

Hallam Land Management Limited, St Albans School and 25 St Albans School Woollam Trust

5.11 Sequential and Exception Test Requirements

National Policy and Guidance

- 5.11.1 Paragraph 168 of the NPPF states "The aim of the sequential test is to steer new development to areas with the lowest risk of flooding from any source. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower risk of flooding. The strategic flood risk assessment will provide the basis for applying this test. The sequential approach should be used in areas known to be at risk now or in the future from any form of flooding".
- 5.11.2 The PPG sets out the principles of the Sequential and Exception Tests and what is required to pass them when proposing new development in an area at risk of flooding. The Sequential Test aims to promote development in areas of low flood risk. The Exception Test is triggered when development cannot be located within an area of suitably low risk flood risk.
- 5.11.3 The Exception Test requires a demonstration that flood risk to people and property can be managed satisfactorily, while allowing necessary development to go ahead in situations where suitable Sites at lower risk of flooding are not available. Essentially, the Exception Test requires the proposed development to show that it will provide wider sustainability benefits to the community that outweigh flood risk, and that it will remain safe for its lifetime, without increasing flood risk elsewhere and where possible reduce flood risk overall.

Local Policy and Guidance

- 5.11.4 Paragraph 172 of the NPPF States "Where planning applications come forward on sites allocated in the development plan through the sequential test, applicants need not apply the sequential test again. However, the exception test may need to be reapplied if relevant aspects of the proposal had not been considered when the test was applied at the planmaking stage, or if more recent information about existing or potential flood risk should be taken into account".
- 5.11.5 The Site has not been reviewed as part of a Sequential Test as part of the Local Plan Evidence Base and as such, the below provides evidence that a sequential approach has been taken to the development Site itself.

5.11.6 Flood Risk Vulnerability & Flood Zone Incompatibility

5.11.7 Table 5-4 summarises the flood risk vulnerability classification for different types of development. The proposed residential development at the Site is classified as More Vulnerable development with the commercial development at the Site classified as Less Vulnerable.

Class	Description
More vulnerable	 Hospitals Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels. Non-residential uses for health services, nurseries and educational establishments. Landfill* and Sites used for waste management facilities for hazardous waste. Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.
Less vulnerable	 Police, ambulance and fire stations which are not required to be operational during flooding. Buildings used for shops; financial, professional and other services; restaurants, cafes and hot food takeaways; offices; general industry, storage and distribution; non-residential institutions not included in the 'more vulnerable' class; and assembly and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill* and hazardous waste facilities). Minerals working and processing (except for sand and gravel working). Water treatment works which do not need to remain operational during times of flood. Sewage treatment works, if adequate measures to control pollution and manage sewage during flooding events are in place. Car parks
Source: NPPF	Annex 3: Flood Risk Vulnerability Classification

Table 5-5: Vulnerability Classification (Annex 3 NPPF Extract).

5.11.8 An extract of PPG Table 2 is provided in Table 5-6 which identifies that an Exception Test is not required for More Vulnerable and Less Vulnerable development located within Flood Zone 1.

	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water compatible
Zone 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Zone 2	\checkmark	Exception Test required	\checkmark	\checkmark	\checkmark
Zone 3a	Exception Test required †	Х	Exception Test required	\checkmark	\checkmark
Zone 3b	Exception Test required*	Х	X	Х	√*

<u>Key</u>

 \checkmark Exception Test is not required

X Development should not permitted

"+" In Flood Zone 3a essential infrastructure should be designed and constructed to remain operational and safe in times of flood.

"*" In Flood Zone 3b (functional floodplain) essential infrastructure that has passed the Exception Test, and water-compatible uses, should be designed and constructed to:

- remain operational and safe for users in times of flood;
- result in no net loss of floodplain storage;
- not impede water flows and not increase flood risk elsewhere.

Hallam Land Management Limited, St Albans School and 27 St Albans School Woollam Trust

5.12 Site Specific Sequential Assessment of Flood Risk

5.12.1 Table 5-7 provides a breakdown of the percentage of each flood risk type that the Site is identified to be at risk from.

Flood Risk	% Site at Risk	% Proposed Built Development Area at Risk	Site Specific Assessment
Fluvial			
Flood Zone 2	0%	0%	The Site lies wholly within Flood Zone 1 and as
Flood Zone 3	0%	0%	such fluvial flood risk is considered to be very low.
Tidal	0%	0%	The Site is situated inland and therefore is not at risk from Tidal Flooding.
Surface Water			
1 in 30-year Event	1.69%	0.82%	The proposed development areas at the Site are shown to be at surface water flood risk
1 in 100-year Event	3.22%	2.04%	during the 1 in 30-Year (0.82%), 1 in 100-Year (2.04%), and 1 in 1,000-Year (13.31%) events.
Event will be implement surface water floo development. It should be noted modelling will also that flood risk will within the landsca spaces, and strate	A sustainable surface water drainage strategy will be implemented at the Site to alleviate surface water flood risk to the proposed development. It should be noted that further hydraulic		
			modelling will also be undertaken to ensure that flood risk will be retained and controlled within the landscape corridors, public open spaces, and strategic SuDS network throughout the proposed development
Groundwater	N/A	N/A	Appendix A of the South West Hertfordshire Level 1 SFRA contains mapping which includes 'Groundwater Flood Risk Mapping'. The Site at St Albans illustrates groundwater flood risk to be at least 5m below ground level to the west and between 0.5-5.0m below ground level to the east.
			From a review of the BGS Geoindex, there are no public borehole records identified within the Site at St Albans. The nearest trail pit (TL10NW38) is situated approximately 1.3km to the west of the Site and was dug to approximately 2.0m below ground level (bgl). The records demonstrate that no groundwater was encountered at this location as part of the exploration.
			Groundwater monitoring is currently being undertaken across the Site to further

Table 5-7 – Sequential Approach Risk Rating

Flood Risk	% Site at Risk	% Proposed Built Development Area at Risk	Site Specific Assessment
			understand groundwater flood risk and inform the proposed surface water drainage strategy.
Sewer	N/A	N/A	 Thames Water asset mapping indicates that an existing 225mm diameter foul water sewer bisects the Site to the north west before flowing south westerly along Harpenden Road. Sewer asset mapping indicates an existing 300mm diameter surface water sewer is situated to the west of the Site along Harpenden Road. The Level 1 SFRA states that historic sewer flooding has been recorded within St Albans. Thames Water sewer records documented within the report shows 4 recorded flood incidents within the AL3 6 (St Albans City) postcode.
Reservoir	0%	0%	The Site is situated outside of the maximum extent of flooding from reservoirs.
Canal	0%	0%	The Site is not situated within the vicinity of a canal.

5.13 Site-Specific Measures

- 5.13.1 Whilst areas of the Site may be considered to be at surface water flood risk, these will be mitigated through:
 - Steering all proposed development to be located outside corridors and areas shown to be affected by surface water flood flooding i.e., proposed surface water drainage channel;
 - Raising finished floor levels by a minimum of 150mm above surrounding ground levels;
 - Implementation of a surface water drainage strategy which positively and sustainably manages surface water runoff from the Proposed Development to greenfield conditions up to and including the 1 in 100 year +40% climate change event; and
 - Managing existing surface water flow routes through green-blue corridors.

5.14 Site-Specific Sequential Test

5.14.1 Wollam Park, St Albans is draft allocated within the Draft St Albans City & District Council (Regulation 19) Local Plan 2041 under Strategic Policy SP1-B1. After a review of the Level 2 Strategic Flood Risk Assessment, it is noted that the Site was not taken forward to the Sequential Test stage by St Albans City & District Council due to the existing surface water flow routes bisecting the Site.

- 5.14.2 As such, a Site-specific Sequential Test has been undertaken by LRM and PJA to ensure the a sequential risk based approach is followed to steer the new development on-Site to areas within the lowest risk of flooding, taking all sources of flood risk into account.
- 5.14.3 The Sequential Test has been undertaken utilising existing publicly available data from the South West Hertfordshire Level 1 and Level 2 Strategic Flood Risk Assessments, produced by JBA Consulting. Planning judgement has been applied to the data available on each allocated site to perform the Sequential Test, strategically rating which sites may be the most preferred on a flood risk basis.
- 5.14.4 Detailed information regarding the sequential test approach, methodology and results are available in the Wollam Park, St Albans, Sequential Test Report.

6 Surface Water Drainage Strategy

- 6.1.1 A Surface Water Drainage Strategy outlining the means of surface water management and disposal from the proposed development Site has been produced largely in line with the latest guidance as follows:
 - CIRIA C753 "The SuDS Manual", (CIRIA, 2015);
 - CIRIA document C522 Sustainable Drainage Systems design manual for England and Wales;
 - CIRIA document C635 Designing for exceedance in urban drainage;
 - Rainfall Runoff Management for Developments SC030219 (Environment Agency, 2013);
 - Environment Agency's pollution prevention guidelines (PPGs); and
 - Sewerage Sector Guidance Design & Construction Guidance v2.2 (Water UK, June 2022).
- 6.1.2 The proposed Surface Water Drainage Strategy aims to sustainably manage surface water runoff without increasing flood risk to on- or off-Site, nor adversely impacting on water quality through the use of Sustainable Drainage Systems (SuDS).
- 6.1.3 SuDS aim to mimic the natural processes of surface water drainage by allowing water to flow along natural flow routes ensuring that runoff rates and volumes during storm events are not increased above the Greenfield values. SuDS also aim to provide water treatment, biodiversity, and amenity benefits within blue and green corridors.
- 6.1.4 There are typically three design storm events which should be considered when designing the SuDS system and managing flows and volumes:
 - 1 in 1 year storm event, on sloping Sites without basements, where surcharging above soffits of any surface water drainage pipework is not permitted.
 - 1 in 30 year storm event, where surface water flooding of the site does not occur at this frequency.
 - 1 in 100 year storm event with allowances for future climate change, where runoff from the site should be controlled to the greenfield rate using SuDS attenuation features to manage flows and volumes within the extents of the development Site.
- 6.1.5 Further to this, dedicated overland flow routes should be identified through the development to convey any exceedance flows in events greater than the 1 in 100-year plus climate change event or in the event of system failure.

6.2 Existing Surface Water Drainage Features

6.2.1 The Site is currently greenfield in nature, with existing surface water flows assumed to flow overground in accordance with the existing topography from west to east before infiltrating into the ground.

6.3 Discharge Hierarchy

6.3.1 In accordance with SuDS guidance, surface water should be sustainably managed and designed in accordance with the discharge hierarchy; collect for re-use; infiltrate to ground; discharge to watercourse; discharge to surface water sewer, highway drain or another drainage system; and lastly discharge to a combined sewer.

Discharge Location	Suitability	Comments
Collect for Re-Use	√ / ×	Water butts and rainwater harvesting systems can collect rainwater for non- potable uses e.g. within gardens and other non-potable uses. The potential to incorporate rainwater harvesting and re-use measures may be assessed during the detailed design stage.
Infiltration	~	Preliminary infiltration testing at the Site was undertaken by Geo Environmental Group in July 2024 to understand whether an infiltration-led surface water drainage strategy could be utilised. After a review of the preliminary infiltration results recorded by Geo Environmental Group, infiltration was viable on-Site at test locations IT01 and IT04, allowing surface water drainage from the proposed residential-led development and sports pitches to discharge via infiltration.
Watercourse	×	There are no ordinary watercourses within the vicinity of the Site.
Surface Water Sewer	×	An existing 300mm diameter surface water sewer is situated to the west of the Site along Harpenden Road. If this were to be utilised, surface water pumping from the east of the Site would need to be undertaken. As such, this has not been proposed.
Combined Sewer	×	There are no existing Thames Water combined sewers situated within the vicinity of the Site.

Table 6-1: Drainage Hierarchy

6.3.2 In accordance with the above search sequence, it is proposed to discharge surface water runoff via infiltration for the proposed residential-led development and sports pitches.

6.4 Infiltration Rates

- 6.4.1 Preliminary infiltration tests were undertaken in April 2018 by WSP (Ground Risk and Remediation) to inform the drainage strategy. Within the six infiltration tests undertaken, two demonstrated that infiltration was viable and the rate of 1.6 x 10⁻⁴ m/s was found at the outfall basin location. However, it is noted that these results are not recent.
- 6.4.2 Therefore, further infiltration testing at the Site was undertaken by Geo Environmental Group in July 2024 .
- 6.4.3 Seven trial pits across the Site were explored to understand infiltration rates. The preliminary infiltration results at IT01 to IT07 are shown in Table 3-2 and are available in Appendix B.

Location	Depth Range of Test (m)	Time	Infiltration Rate (m/s)
	1.30-2.40	115	2.96X10-5
IT01	1.05-2.08	132	2.63X10-5
	1.01-1.82	119	2.97X10-5
IT02	1.00-2.00	217	N/A
IT03	1.45-2.75	194	N/A
IT04	1.20-2.00	105	2.60X10-5
	1.00-1.75	165	1.88X10-5
IT05	1.40-2.40	201	N/A
IT06	1.80-2.80	195	N/A
IT07	1.40-2.50	183	N/A

Table 6-2: Summary of Preliminary Infiltration Test Results

- 6.4.4 After a review of the preliminary infiltration results recorded by Geo Environmental Group, no infiltration results could be recorded at trial pits IT02, IT03, IT05, IT06 and IT07. It was noted that infiltration was viable on-Site at test locations IT01 and IT04.
- 6.4.5 As such, the use of traditional soakaways are considered to be a feasible means of surface water drainage at the Site at locations IT01 and IT04 only. Please refer to Section 6.6 for further information in relation to the proposed surface water drainage strategy.

6.5 Climate Change Impact

- 6.5.1 In line with the climate change allowances recommended by the Environment Agency in their February 2016 guidance, updated May 2022, the impact of climate change on the peak rainfall intensities in urban drainage designs should be assessed by Management Catchment and increased accordingly.
- 6.5.2 The peak rainfall intensity allowances for the Colne Management Catchment has therefore been reviewed, as detailed for the 3.3% annual exceedance rainfall event in Table 6-3 and 1% in Table 6-4.

	Central Allowances	Upper End Allowances
2050s	20%	35%
2070s	25%	35%
652		

6.5.3

Table 6-4: 1% Peak Rainfall Allowances for the Colne Management Catchment

	Central Allowances	Upper End Allowances
2050s	20%	40%
2070s	25%	40%

Hallam Land Management Limited, St Albans School and 33 St Albans School Woollam Trust

- 6.5.4 The proposed development and associated surface water drainage scheme has been designed to sustainably manage the run-off from the critical 1 in 100 year storm event (1%AEP) with a 40% allowance for climate change.
- 6.5.5 Consideration to the potential impact of climate change has been given in the proposed development, in particular regarding locating built development outside of the maximum flood extents in climate change scenarios and exceedance flow routing.

6.6 Proposed Surface Water Drainage Strategy

- 6.6.1 The proposed Surface Water Drainage Strategies are shown on the Indicative Surface Water Drainage Strategy drawings (Ref. 05920-WR-0525 and 05920-A-0503), included in Appendix F
- 6.6.2 In accordance with the drainage hierarchy, as indicated previously, the Site is suitable for soakaway drainage via infiltration at ITO1 and ITO4, situated to the north and east of the Site.
- 6.6.3 Surface water runoff from the proposed car parking areas and sports pavilion will be channelled through a swale with an underlying filter trench to enhance water quality. The treated surface water runoff will then be discharged into an infiltration basin located south of the proposed sports pitches.
- 6.6.4 Furthermore, the proposed sports pitches will be drained via collector drains (designed by TGMS in accordance with Sport England Guidance), discharging into the proposed infiltration basin at a maximum rate of 20I/s. Surface water attenuated within the basin will discharge via infiltration to ground at a worst case scenario rate of 2.63x10⁻⁵ (IT01).
- 6.6.5 It is proposed that surface water runoff from the proposed residential-led development will be attenuated by multiple detention basins throughout the Site before entering the final infiltration basin to the east, situated at test location IT04 at a worst case scenario rate of 1.88x10⁻⁵.
- 6.6.6 The proposed Surface Water Drainage Strategy implements SuDS in the form of detention basins, infiltration basins and swales. A summary of the selection of SuDS features has been provided in Table 6-5.

Feature	Description	Selection	
Green Roofs	Green roofs are systems which cover a building's roof with vegetation. They are laid over a drainage layer, with other layers providing protection, waterproofing and insulation.	× Due to the proposed residential nature of the development, green roofs have not been proposed. The ability for the residential dwellings to incorporate green roofs will be limited as a significant proportion of the roof space will be occupied by PV panels.	
Filter Strips	These are wide, gently sloping areas of grass or other dense vegetation that treat runoff from adjacent impermeable areas.	✓ / × Due to the proposed residential nature of the development and required land take, filter strips have not been proposed at this stage, but may be considered at a later design stage.	
Pervious Surfaces	Pervious surfaces allow rainwater to infiltrate through the surface into an underlying storage layer, where water is stored before infiltration to the ground, reuse, or release to surface water.	× Due to the proposed residential nature of the development, permeable paving has not been proposed at this stage. Moreover, the current infiltration testing indicates that infiltration rates across the site would not be conclusive to the use of pervious surfaces.	
Swales	Swales are broad, shallow channels covered by grass or other suitable vegetation. They are designed to convey and/or store runoff, and can infiltrate the water into the ground (if ground conditions allow).	✓ Conveyance features, such as swales have been incorporated within the surface water drainage strategy to convey water away from properties and towards the attenuation features.	
Infiltration Basins	Infiltration basins are depressions in the surface that are designed to store runoff and infiltrate the water to the ground. They may also be landscaped to provide aesthetic and amenity value.	√ Infiltration testing has been undertaken and demonstrates that an infiltration-led design is viable at test location ITO4 to the east of the Site.	
Basins / Ponds	Wet ponds are basins that have a permanent pool of water for water quality treatment whereas basins are usually dry for a larger period of time outside storm events. They provide temporary storage for storm runoff. These features may provide amenity and wildlife benefits.	✓ Attenuation basins and ponds have been proposed for use on-Site. The exact wet / dry nature will be confirmed during the next phase of design.	
Underground Attenuation	Underground attenuation structures are below-ground attenuation features. These are typically formed using crates which provide a high void space for attenuation and water quantity control.	× Underground attenuation have not been proposed for use within the proposed development .	
Bioretention / raingardens	Bioretention systems or rain gardens are areas of vegetation into which rainwater and runoff can be directed. These are particularly affected at providing water quality improvements.	× Rain gardens have not been proposed for use within the proposed development .	
Filter Drains	Filter drains are gravel filled trenches that collect and move water. They also treat pollution. The trench is filled with free draining gravel and often has a perforated pipe in the bottom to collect the water	✓ / × Conveyance features, such as filter drains may be incorporated within the surface water drainage strategy to convey water away from properties and towards the attenuation features. This will be decided at designed	

Table 6-5: Summary of SuDS Feature Selection

Hallam Land Management Limited, St Albans School and 35 St Albans School Woollam Trust Wollam Park, St Albans

Flood Risk Assessment and Drainage Strategy

Feature	Description	Selection
		design.
Water Butts	Water butts are water tanks which are used to collect and store rainwater runoff, typically from roof tops via pipes. Overflows will still enter the site surface water drainage system.	✓ / × Water Butts for individual residential dwellings will be considered at a later design stage.

6.6.7 To ensure maximum peak discharge is maintained at greenfield runoff rates, on-Site attenuation will be required. The required storage volume for the attenuation of the 1 in 100 year event plus 40% climate change event has been calculated for each land parcel and discharge location, assuming a proportion of impermeable surfacing based on the illustrative masterplan; the estimated contributing areas, proposed attenuation basins are shown together with their required capacity on the Indicative Surface Water Drainage Strategy drawing in Appendix F. A summary table for the proposed attenuation is provided in Table 6-6 which also identifies the impermeable area which has assumed each residential development parcel is 60% impermeable with an additional 10% for development creep, 80% for mixed-use development, 90% for commercial development, 100% for highways and attenuation basins and 50% for schools.

Assumed Catchment	Proposed Discharge Rate (I/s)	Proposed Impermeable Area Including 10% Urban Creep [ha]	Proposed Attenuation Volume Required [m ³]
А	N/A	2.84	1,785
В	N/A	1.57	1,220
С	N/A	2.78	3,990
D	1.88X10 ⁻⁵	2.54	4,695
E	N/A	0.66	1,835
F, G, I and J	N/A	7.45	3,780
н	N/A	1.41	3,425
к	N/A	1.97	2,395
L	N/A	0.75	1,900
Sports Pitches	2.63x10 ⁻⁵	0.168 (pavilion and carparking areas)	2,245
TOTAL	N/A	22.14	27,270

Table 6-6: SuDS Summary

- 6.6.8 The proposed attenuation basins have been mostly designed as dry features at this stage however, some may be designed to have a permanently wetted pool below the existing drainage invert level, full details of this will be available at the detailed design stage. The proposed attenuation features are located at the natural low points of the proposed Site and sized to provide the required attenuation and treatment.
- 6.6.9 The SuDS features will aim to provide multiple functions as amenity and biodiversity assets, which may include additional proposed permanent wet features, particularly if such features are required

to improve the Biodiversity Net Gain (BNG) scoring of the development and to provide a carbon store. Other aspects of the proposed strategy which reduce the developments carbon footprint compared to traditional drainage include:

- Reduced surface water pumping, wastewater pumping/treatment, leading to reduced energy use and associated carbon emissions;
- Embodied carbon (avoided) as a result of reduced consumption (e.g., due to rainwater harvesting); and
- Cooling/shading of buildings, leading to reduced energy use and associated carbon emissions.⁵
- 6.6.10 Water butts may be available for all households to provide an opportunity for water re-use. However, as the attenuation capacity for the water butts cannot be guaranteed during a rainfall event, these have not been accounted for within drainage strategy attenuation calculations.
- 6.6.11 Surface water run-off from roofs and hard surfaces across the development will drain to a new surface water drainage network incorporating SuDS components to control discharge to the receiving watercourses, provide attenuation storage on-Site and provide treatment to run-off. The surface water drainage system will be designed to convey the run-off from the critical 1 in 100 year (+40% climate change allowance) storm event without flooding. The proposed attenuation ponds are located at the natural low points of the proposed Site and sized to provide the required attenuation and treatment.
- 6.6.12 The proposed SuDS features have been sized in Flow to ensure that the proposed system will be capable of conveying run-off from the design storm event without flooding. Refer to Appendix G for the Flow model output.
- 6.6.13 The design calculations confirm that the proposed surface water drainage system is capable of attenuating, and discharging in a controlled manner, the run-off from the design 1 in 100 year storm with a 40% allowance for climate change without flooding of the development.
- 6.6.14 The surface water drainage strategy is based upon the site masterplanning details at the time of production. Changes to the site development profile, impermeable areas across the site or other such aspects of the scheme will result in the need to revise the calculations.

⁵ <u>https://www.susdrain.org/delivering-suds/using-suds/benefits-of-suds/Carbon-reduction-and-sequestration</u>

6.7 Development Creep

- 6.7.1 Over the lifetime of a development, it is possible that the overall impermeable area within the Site could increase by as much as 10% through the house buyers undertaking activities such as property extensions and introducing paved gardens.
- 6.7.2 Table 6-7 identifies the potential increase in impermeable area as a result of urban creep over the lifetime of the development.

Catchment	Impermeable Area (ha)	Residential Only Impermeable Area (ha)	10% Creep (ha)	Total Impermeable Area (ha)
Α	2.65	1.90	0.19	2.84
В	1.57	0.00	0.00	1.57
С	2.59	1.96	0.196	2.78
D	2.37	1.67	0.167	2.54
E	0.63	0.31	0.031	0.66
F, G, I and J	7.07	3.83	0.383	7.45
н	1.41	0.00	0.00	1.41
к	1.83	1.38	0.138	1.97
L	0.71	0.44	0.044	0.75
Sports Pitches	0.22	0.00	0.00	0.22
TOTAL	21.05	11.49	1.149	22.19

Table 6-7: Development Creep Assessment

6.8 Water Quality

Principles of Water Quality Assessment

- 6.8.1 The general principles are to mitigate against adverse impacts on water quality in the receiving water environment is described in the CIRIA C753 "The SuDS Manual" (2015). This document recommends the following steps to determine the required water quality management for discharges to surface waters and groundwaters based on the risk posed:
 - 3 Interception: Prevent runoff and associated pollutants from the Site to receiving surface waters for the majority of small rainfall events;
 - 4 Determine the pollution hazard level associated with the given type of development;
 - 5 Select a risk assessment approach based on receiving water environment and the pollution hazard level; and
 - 6 Undertake a detailed risk assessment for each outfall or discharge point taking into account the pollution hazard level, the status of the receiving water environment and effectiveness of the proposed SuDS techniques.
- 6.8.2 The extent of the treatment required will depend on the water quality status of receiving watercourses, land use, the level of pollution prevention in the catchment and for groundwater,

the natural protection afforded by underlying soil layers. The pollution hazard level of the development type should be identified.

- 6.8.3 Residential roofs are noted as having 'very low' pollution hazard level and require removal of gross solids and sediments only. Residential car parks, access roads, driveways and non-residential car parking with infrequent change (e.g., schools) are shown to present 'low' pollution hazard level.
- 6.8.4 Low pollution hazard levels require application of a 'simple index approach' for water quality risk assessment for discharges to surface and ground waters.

Existing Water Quality of the Proposed Receiving Watercourses

- 6.8.5 The proposed works fall into the Environment Agency's Thames River Basin District (RBD) which covers an area of 16,200km². It encompasses all of Greater London and extents from North Oxfordshire southwards to Surrey and from Gloucester in the west to the Thames Estuary, as well as Kent in the east.
- 6.8.6 The Thames River Basin has been divided into 20 Management Catchments, of which the Site falls into the Colne Management Catchment and then on a smaller scale, the Colne Operational Catchment.
- 6.8.7 Within the Colne Operational Catchment, the Site falls into the Upper Colne and Ellen Brook Water Body. This is identified not to be a designated artificial or heavily modified watercourse. The 2022 Classification Cycle identifies it has a 'Poor' ecological status and 'Fail' chemical status in 2019.
- 6.8.8 Reasons for not achieving 'good' status include:
 - Groundwater Abstraction;
 - Misconnections;
 - Urbanisation;
 - Transport drainage;
 - Poor Soil Management;
 - Reservoir / Impoundment.
- 6.8.9 As such the Environment Agency will be seeking improvements to the water quality of the local watercourse system to achieve a status of Good by 2027.
- 6.8.10 The principles of the SuDS Management Train should be incorporated into the proposed surface water drainage schemes for new development, to reduce the risk of further pollutants entering watercourses via run-off from roofs and paved areas.

Wollam Park, St Albans

- 6.8.11 SuDS components can reduce pollution in run-off through filtering out pollutants or reducing flow rates to encourage deposition of any contaminants. Suitable components could include:
 - filter drains;
 - swales;
 - attenuation basins;
 - wetlands; and
 - proprietary treatment systems.
- 6.8.12 To protect biodiversity and amenity assets, polluted surface water run-off should not be discharged directly into permanent ponds but treated through an appropriate treatment train. Where possible, interception storage should be included as part of the treatment train to manage pollutants at source. Later stages of treatment in the train should incrementally reduce the level of pollution in run-off before discharge to the receiving water body.

6.9 Contamination and Water Quality

- 6.9.1 The proposed development will utilise SuDS Management Trains across each network to ensure treatment of run-off and removal of pollutants prior to discharge.
- 6.9.2 This is likely to include a mixture of components across the Site, specified according to the opportunities/constraints presented by:
 - the likely pollution hazard of the run-off;
 - the available surface space; and
 - the proposed ground levels/falls across areas of hardstanding.
- 6.9.3 Treatment components within each SuDS Management Train may include:
 - channel drains;
 - catchpits;
 - trapped gullies;
 - attenuation basins incorporating pre-treatment (such as a sediment forebay) and low flow channels;
 - bioretention areas in greenspace around the Site;
 - swales and linear wetlands;
 - filter drains bordering paved areas such as roads and yards; and
 - proprietary treatment systems (such as downstream defenders).
- 6.9.4 The arrangement and composition of each management train will be confirmed at the detailed design stage.

6.9.5 The proposed uses at the Site will comprise residential roofs and individual driveways. Roofs are classified as a 'very low' pollution risk and individual driveways are classed as a 'low' pollution risk level in Table 26.2 of CIRIA C753 The SuDS Manual. 'Low' hazard pollution levels require application of a 'simple index approach' for water quality risk assessment for discharge to surface and groundwaters. The "pollution hazard indices" for a low pollution hazard Site are given in Table 6-8 below.

Table 6-8: Pollution Hazard Indices for a Low Pollution Hazard Site

Total Suspended Solids (TSS)	Metals	Hydrocarbons
0.5	0.4	0.4

- 6.9.6 The surface water drainage system should provide a sufficient level of water quality treatment to prevent pollution of the receiving waterbodies.
- 6.9.7 Table 6-9 provides the indicative SuDS mitigation indices for the proposed SuDS features for the Site. It demonstrates that the mitigation index for the basins are greater than the "*pollution hazard index*" for each pollutant type. Therefore, the strategy is deemed to comply with the water quality requirements of the SuDS standards.

Table 6-9: Indicative SuDS Mitigation Indices

SuDS component	Mitigation Indices		
	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Detention basin	0.5	0.5	0.6
Swale	0.5	0.6	0.6
Filter Strip	0.4	0.4	0.4

6.10 Designing for Exceedance

- 6.10.1 During a rainfall event with a return period well in excess of that for which the surface water drainage system was designed (in this case a 1 in 100 year plus 40% climate change allowance), or in the event of a blockage, the capacity of the surface water drainage system may be exceeded, resulting in localised flooding in the areas affected. This is considered to be a residual risk.
- 6.10.2 However, the layout and landscaping of the proposed development should be designed and will be developed to ensure that exceedance flood flow paths are routed away from vulnerable development and toward landscaped areas, areas of open attenuation or surrounding green infrastructure.
- 6.10.3 In line with Building Regulations the finished floor levels of the properties will be set at least 150mm above the surrounding ground levels to prevent surface water ingress through doorways. Location of buildings in ground depressions will be avoided to prevent water ponding around dwellings.

6.10.4 Minor modifications to topography, the profile of the access road, footpath or kerb and strategically placed green infrastructure will be developed to ensure that exceedance flood flows are managed and there is little or no risk of property flooding or unacceptable ponding within the highway.

7 Foul Water Drainage Strategy

- 7.1.1 Thames Water are the statutory water authority for foul drainage in the area. Sewer asset mapping has been reviewed to understand the existing foul drainage network within the vicinity of the Site.
- 7.1.2 From a review of the existing Thames Water sewer asset mapping, an existing 225mm diameter foul water sewer bisects the Site to the north west before flowing south westerly along Harpenden Road.
- 7.1.3 A foul water drainage strategy has been prepared (Ref. 05920-WR-0526) which implements measures for foul flows to drain via gravity to the proposed pumping station within the Site. Foul water will be pumped from the proposed Type 3 pumping station (typically more than twenty dwellings), to the north west of the Site into Manhole MH8702.
- 7.1.4 Furthermore, a secondary foul water drainage strategy has been prepared (Ref. 05920-A-0503) for the proposed sports pavilion facilities which implements measures for foul flows to drain via gravity to the existing Thames Water foul water sewer at Manhole 101A.
- 7.1.5 A developer enquiry has been submitted to Thames Water to determine whether the existing public sewer network has capacity for the proposed development at St Albans. A response was received on the 5th April 2024 and states that the existing sewerage network will not have enough capacity for full development at this time.
- 7.1.6 Thames Water suggests that the Site should look to utilise Manhole 8702 situated to the north west of the Site at a pumped flow rate of 21.19 litres/second. In order to make the appropriate upgrades, modelling work will need to be undertaken to provide a design solution and to provide the necessary improvements. Once modelling has begun, Thames Water may need to contact the developer to discuss changing the proposed connection point for capacity reasons.
- 7.1.7 The cost of any upgrades to the surrounding Thames Water infrastructure will be covered by Thames Water and will be planned and delivered following approval of the outline planning permission. ption & Management

7.2 Surface Water Drainage System

7.2.1 Responsibility for the maintenance of the main surface water drainage networks and SuDS features may be offered to Thames Water for adoption under S104 of the Water Industry Act 1991. To meet the requirements for adoption, the proposed infrastructure must be designed and constructed according to Sewerage Sector Guidance – Design & Construction Guidance v2.2 (Water UK, June 2022).

- 7.2.2 Alternatively, it is common for SuDS features to be operated and maintained by a third-party private maintenance company. Should this be necessary, a third-party management company would be established to maintain the features in perpetuity and an adoption agreement between the final Site developer and Maintenance Company would be largely based upon the CIRIA ICoP MA2 SuDS Maintenance Framework Agreement.
- 7.2.3 Drainage serving new roads to be offered for adoption by the Local Highway Authority will become highway drains, adopted as part of Section 38 agreements (Highways Act 1980).
- 7.2.4 In England it also appears increasingly likely that Schedule 3 of the Flood and Water Management Act will be enacted in England, with DEFRA currently recommending implementation of this in 2024. This legislation, when enacted, will require SuDS Approval Bodies (SABs) to be formed in England who will review the design of SuDS and will likely be responsible for the future operation and maintenance. As the layout of the development evolves it is recommended that the surface water drainage design seeks to comply with this legislation when it comes forward ensuring that the SuDS proposed are designed and built in accordance with the SAB's requirements and may be offered for adoption to the SAB if required.
- 7.2.5 A typical maintenance schedule of the attenuation basins, infiltration basins, swales and flow control devices proposed on Site are shown in Table 7-1 to Table 8-4.

FREQUENCY	ACTION
Monthly	 Litter and debris removal. Mow grasses (where required to promote lateral runoff inflow) and remove resultant clippings (during growing season only). Remove nuisance and invasive vegetation (as listed in section 29.6.2 of the CIRIA SuDS Manual (2015)) (for 12 months following installation). Inspect / check all inlets, outlets, surface and overflows (where required) to ensure that they are in good condition, free from blockages and operating as designed. Take action where required.
Six Monthly	• Remove nuisance and invasive vegetation (as listed in section 29.6.2 of the CIRIA SuDS Manual (2015)).
Annually	 Remove all dead growth prior to the start of growing season. Re-seed areas of poor vegetation growth. Alter plant types to better suit conditions, where required. Inspect and document the presence of wildlife. Remove sediment from inlets, outlets and forebay. Manage wetland plants, where required.
As Required	 Prune and trim trees and remove cuttings. Remove sediment from forebay, when 50% full and from micropools if volume reduced by more than 25%.

Table 7-1: Attenuation Basin Indicative Maintenance Schedule

Hallam Land Management Limited, St Albans School and 45 St Albans School Woollam Trust

FREQUENCY	ACTION
	 Repair erosion or other damage by re-turfing or reseeding. Re-level uneven surfaces and re-instate design levels (typically once every 60 month period). Remove and dispose of oils or petrol residues using safe standard practices.
Following All Significant Storm Events	 Inspect and carry out essential recovery works to return feature to full working order.

Table 7-2: Infiltration Basin Indicative Maintenance Schedule

FREQUENCY	ACTION
Monthly	 Litter and debris removal Mow grasses (where required to promote lateral runoff inflow) and remove resultant clippings (during growing season only) Remove nuisance and invasive vegetation (as listed in section 29.6.2 of the CIRIA SuDS Manual (2015)) (for 12 months following installation) Inspect / check all inlets, outlets, surface and overflows (where required) to ensure that they are in good condition, free from blockages and operating as designed. Take action where required.
Six Monthly	• Remove nuisance and invasive vegetation (as listed in section 29.6.2 of the CIRIA SuDS Manual (2015))
Annually	 Remove all dead growth prior to the start of growing season Re-seed areas of poor vegetation growth. Alter plant types to better suit conditions, where required Inspect and document the presence of wildlife
As Required	 Prune and trim trees and remove cuttings Remove sediment from forebay, when 50% full and from micropools if volume reduced by more than 25% Repair erosion or other damage by re-turfing or reseeding Re-level uneven surfaces and re-instate design levels (typically once every 60 month period) Remove sediment from pre-treatment system (e.g. forebays) when 50% full Remove and dispose of oils or petrol residues using safe standard practices
Following All Significant Storm Events	 Inspect and carry out essential recovery works to return feature to full working order

Table 7-3: Swale Indicative Maintenance Schedule

FREQUENCY	ACTION						
Monthly	 Litter and debris removal Mow grasses (where required to promote lateral runoff inflow) and remove resultant clippings (during growing season only) 						

FREQUENCY	ACTION
	 Remove nuisance and invasive vegetation (as listed in section 29.6.2 of the CIRIA SuDS Manual (2015)) (for 12 months following installation) Inspect / check all inlets, outlets, surface and overflows (where required) to ensure that they are in good condition, free from blockages and operating as designed. Take action where required.
Six Monthly	 Remove nuisance and invasive vegetation (as listed in section 29.6.2 of the CIRIA SuDS Manual (2015))
Annually	 Check for poor vegetation growth due to lack of sunlight or dropping of leaf litter, and cut back adjacent vegetation where required Re-seed areas of poor vegetation growth. Alter plant types to better suit conditions, where required Inspect and document the presence of wildlife
As Required	 Repair erosion or other damage by re-turfing, reseeding or replacing filter materials. Re-level uneven surfaces and re-instate design levels (typically once every 60 month period) Remove and replace top 300 – 500mm of gravel, clean and replace where required (typically every 60 month period) Remove and dispose of oils or petrol residues using safe standard practices
Following All Significant Storm Events	 Inspect and carry out essential recovery works to return feature to full working order

FREQUENCY	ACTION								
Monthly	• Inspect and identify any areas that are not operating correctly. If required, take remedial action (for three months following installation).								
Six Monthly	 Inspect and identified ant area that are not operating correctly. If required, take remedial actions. Remove sediment from any pre-treatment structures. 								
Annually	• N/A								
Following All Significant Storm Events	• Inspect and carry out essential recovery works to return the feature to full working order.								

- 7.2.6 The proposed maintenance regimes for the devices should be largely in accordance with The SuDS Manual (CIRIA C753) and other best practice guidelines and in accordance with manufacturer's recommendations. This will ensure the design performance, structural integrity and where applicable- appearance of each feature is maintained throughout its lifetime.
- 7.2.7 Further details will be provided on the maintenance requirements of the proposed SuDS components across the development as the detailed design is developed. The details of the party

responsible for maintenance of each feature should be confirmed prior to occupation of the proposed development.

7.3 Foul Water Drainage System

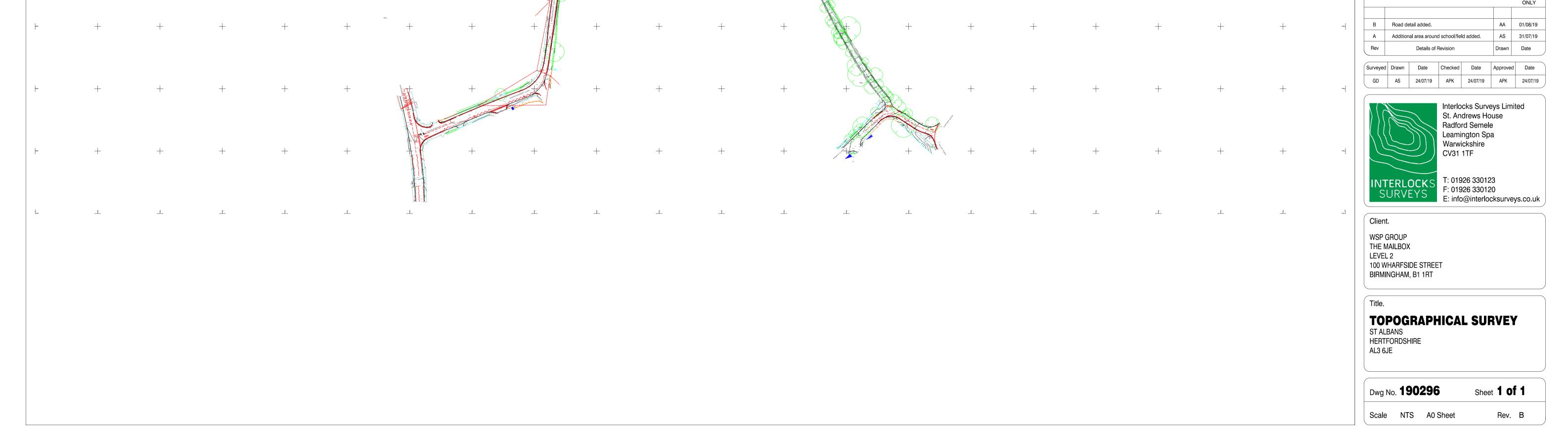
7.3.1 It is anticipated that the proposed foul sewer network may be offered to Thames Water for adoption under Section 104 of the Water Industry Act 1991. To meet the requirements for adoption, the proposed infrastructure must be designed and constructed according to Sewerage Sector Guidance – Design & Construction Guidance v2.2 (Water UK, June 2022).

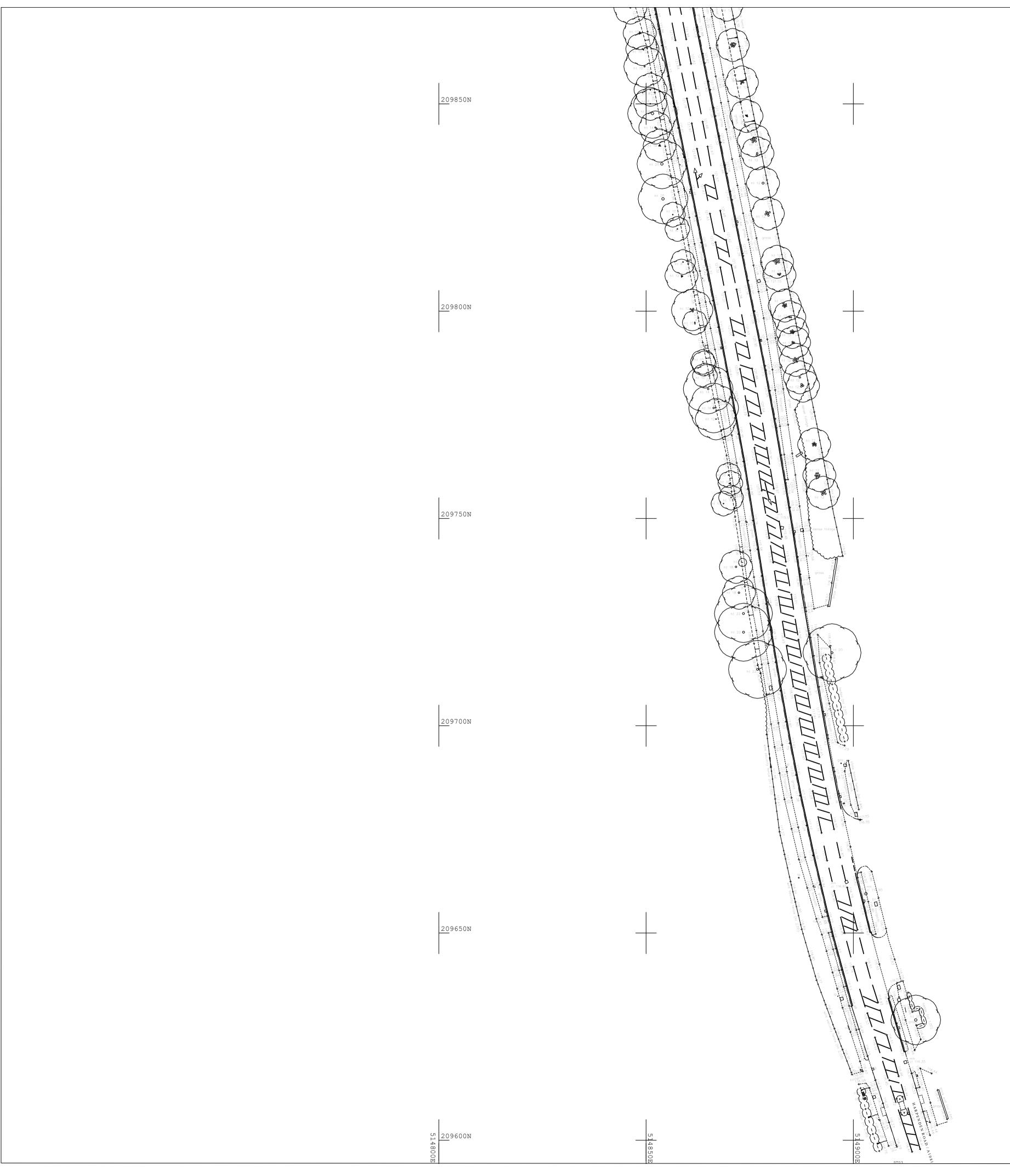
8 Conclusion & Recommendations

8.1 Conclusion

- 8.1.1 PJA has been commissioned by Hallam Land Management Limited, St Albans School and St Albans School Woollam Trust to prepare a Flood Risk Assessment and Drainage Strategy for the proposed residential-led development of up to 1,000 dwellings with two form entry primary school, neighbourhood centre, recreational space, green infrastructure and 80 bed care home at Woollam Park, St Albans.
- 8.1.2 This Flood Risk Assessment has been undertaken in accordance with current national and local flood risk policy requirements. This report assesses the existing and future flood risk at the Site, including an assessment of the potential effects of the proposed development on flood risk on- and off-Site.
- 8.1.3 The assessment concludes that the Site is considered at either very low or low risk of flooding from fluvial, tidal, reservoirs, canals, and sewers.
- 8.1.4 It should be noted that high, medium and low surface water flood risk is present on-Site, however further proposed development hydraulic modelling is currently being undertaken to understand how these extents can be refined.
- 8.1.5 Furthermore, it is possible that there is low to medium groundwater flood risk at the Site. As such, it should be noted that groundwater monitoring is currently being undertaken at the Site, with final recordings due to be undertaken in March 2025.
- 8.1.6 In addition to the NPPF, the proposed surface water drainage strategy complies with local policy and Site-specific requirements.
- 8.1.7 A Surface Water Drainage Strategy has been prepared to demonstrate that a sustainable drainage solution can be provided for the proposed development. The Surface Water Drainage Strategy has been designed largely in accordance with current sustainable development best practice and meets the requirements of Hertfordshire County Council (as the LLFA).
- 8.1.8 The proposed surface water drainage systems aim to mimic the hydrological regime of the existing Site by infiltrating run-off to the north (Sports Pitches) and east (Residential-led Development) of the proposed development. Attenuation storage will be provided in the form of open SuDS features such as attenuation basins, infiltration basins, filter trenches, underground geocellular storage and swales. Water butts may be used to store water for re-use within feasible locations, but these have not been included within attenuation calculations as the capacity availability cannot be guaranteed.
- 8.1.9 SuDS Management Trains will provide suitable treatment of run-off by removing pollutants prior to discharge.

- 8.1.10 A foul water drainage strategy has been prepared (Ref. 05920-WR-0526) which implements measures for foul flows to drain via gravity to the proposed pumping station within the Site. Foul water will be pumped from the proposed Type 3 pumping station to the north west of the Site into Manhole MH8702.
- 8.1.11 Furthermore, a secondary foul water drainage strategy has been included on drawing Ref. 05920-WR-A-0503-P02 for the proposed sports pavilion facilities which implements measures for foul flows to drain via gravity to the existing Thames Water foul water sewer located within the rugby club access road.
- 8.1.12 A developer enquiry has been submitted to Thames Water to determine whether the existing public sewer network has capacity for the proposed development at St Albans. A response was received on the 5th April 2024 and states that the existing sewerage network will not have enough capacity for full development at this time.
- 8.1.13 Thames Water suggests that the Site should look to utilise MH8702 situated to the north west of the Site at a pumped flow rate of 21.19 litres/second. In order to make the appropriate upgrades, modelling work will need to be undertaken to provide a design solution and to provide the necessary improvements. Once modelling has begun, Thames Water may need to contact the developer to discuss changing the connection point for capacity reasons.
- 8.1.14 Safe access and egress will be available to and from the Site for events up to and including the 1 in 100 year plus climate change flood events
- 8.1.15 The responsibility for the operation and maintenance of each SuDS feature will be confirmed prior to the commencement of construction. The SuDS used on Site should be maintained in accordance with manufacturer's recommendations and current best practice and guidelines to ensure routine operation.
- 8.1.16 This report demonstrates that the proposed development may be undertaken in a sustainable manner without increasing the flood risk either at the Site or to any third-party land in line with NPPF requirements.




Appendix A Topographic Survey

																					Symbol & Abbreviation Key.
																					- + + POST & RAIL FENCE
																					RAILINGS
																					-
																					OTHER FENCE
																					KERB
																					DROPPED KERB
																					FOLIAGE
																					VERGE oh OVERHEAD CABLES
																					GATE
																					HEDGE
																					TREE - BROAD LEAVED
																					E TREE - CONIFEROUS
																					BUSH
																					BUILDING
				1	Ŧ			-	Ŧ	Ŧ	Ŧ	-1	Ŧ				1			-1	✤ BOREHOLE
																					△ SURVEY STATION
										0	l.										ORDNANCE SURVEY BENCH MARK
																					A/C AIR CONDITIONING UNIT KO KERB OFFLET
							8				~										AV AIR VALVE LC LIGHTING COLUMI BOL BOLLARD LP LAMP POST
+	+	_ <u>_</u>	+	+	_	+		*	*	+		+	+	_	<u> </u>	<u> </u>	+	+	+	-	BH BOREHOLE NP NAME PLATE
Ι	Ι	I	Ι	Ι	I	Ι				*u-		I	Ι	I	I	I	Ι	Ι	I		BLBED LEVELNBNOTICE BOARDBMBENCH MARKPRPIPE RISER
								1		tar tar											BT BRITISH TELECOM RP RODDING POINT
																					CTV CABLE TV RS ROAD SIGN CL COVER LEVEL SP SIGN POST
							183	Nar Nar		· · · · ·											CR CABLE RISER SV STOP VALVE
									··· / ···												DP DOWN PIPE TL TRAFFIC LIGHT ER EARTH ROD TP TELEGRAPH POLE
+	+	+	+	+	+	+	$+ \frac{1}{3}$	*~~ · · ·	/ + -	/ +	-+\~\\ \ _~	+	+	+	+	+	+	+	+		EP ELECTRICITY POLE TOF TOP OF FENCE
																					EM ELECTRICITY MARKER TOH TOP OF HEDGE FB FUSE BOX TOR TOP OF RAILINGS
							18		4 ₁₀												FH FIRE HYDRANT TOS SERVICE LEVEL
							ţ		/	/											FPFENCE POSTTOWTOP OF WALLFLFLOOR LEVELUTLUNABLE TO LIFT
									1	·											GV GAS VALVE VM VALVE MARKER
										3											GMGAS MARKERVPVENT PIPEGUGULLYWLWATER LEVEL
+	+	+	+	+	+	+	+			+]	_ + \ _ []	+	+	+	+	+	+	+	+	-	HM HYDRANT MARKER WM WATER MARKER
									·~ \$		~										L INVERT LEVEL WO WASH OUT
									\checkmark	·											General.
								189													This survey has been prepared with a scaling accuracy for a plot at a scal
	1	I	1	1	1	1	1	/}/	~~ 			1	I	1	,	1	1	1	1		All tree heights and spreads are approximate. We have tried to identify tre
+	+	+	+	+	+	+	+		+	+ /*	+	+	+	+	+	+	+	+	+	4	however if tree species are critical specialist advice should be gained. Drainage pipe sizes have been measured from the surface. Chamber ac not been gained for safety reasons, therefore sizes should be regarded
					The second			cd (0) (-55. 												approximate.
								1 ₁₀													Some detail may have been omitted due to parked vehicles.
+	+	+	+				x +	+	+	+ /*	+	+	+	+	+	+	+	+	+	_	Notes.
'	I	I	1						1	~		\- \\}	I	I	I.	I	I	I	I		Coordinates related to OS National Grid from ST10 by GPS. Levels related to GPS. Scale factor: 0.99976403
			The second secon				4 /	The second second			/ _ /										Levels related to GPS. Scale factor: 0.99976403
			··· ()) 3260	What what			/			· /		1 1962									

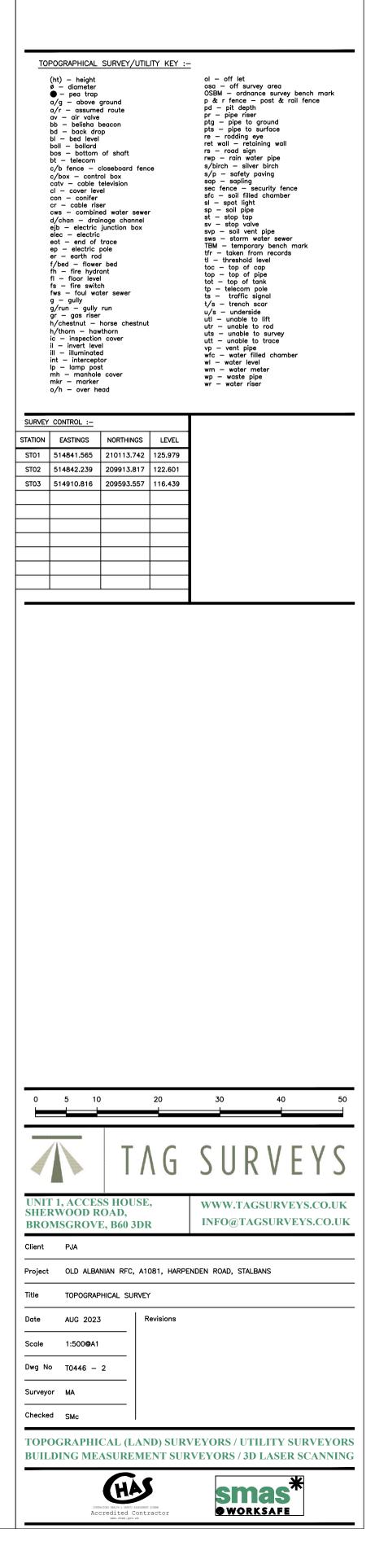
+

2098001 209750N 209700N 209650N

209850N

20960<u>0N</u> 149

NORTH


NOTES

<u>GENERAL NOTES :-</u> ALL LEVELS ARE IN METRES DERIVED FROM GPS TRANSFORMATION. GRID COORDINATES ARE ORDNANCE SURVEY NATIONAL GRID DERIVED FROM GPS TRANSFORMATION. GPS COORDINATES AND LEVELS SET AT STO1 (NO SCALE FACTOR APPLIED)

THIS DRAWING HAS BEEN PRODUCED WITH A PLOT SCALE ACCURACY OF 1:500

SERVICE COVERS INDICATED WHERE VISIBLE. PIPE INVERTS / DETAILS SURVEYED FROM SURFACE INSPECTION ONLY. GENERALLY DAMAGED COVERS AND COVERS WITHIN HIGHWAYS WILL NOT BE LIFTED TREE SPECIES SHOULD BE CONFIRMED BY TREE SPECIALIST IF CRITICAL.

OVERHEAD CABLES ARE INDICATED USING REMOTE SURVEY METHODS AND ARE SUBJECT TO SEASONAL VARIATION, AND SHOULD BE TREATED AS APPROXIMATE. SERVICE COVERS LOCATED UNDER PARKED VEHICLES/MOBILE STRUCTURES MAYBE OMITTED. BURIED SERVICE COVERS WILL NOT BE INDICATED.

Appendix B Infiltration Testing

GEG | Geo Environmental Group Geotechnical, Environmental & Ecological Consultants

GEG House, 17 Graham Road, Malvern, WR14 2HR Tel. 01684 212526 Fax 01684 576917 www.g-eg.co.uk

INFILTRATION TESTING & GROUNDWATER MONITORING

LAND AT CHEAPSIDE HARPENDEN ROAD ST ALBANS, HERTFORDSHIRE AL3 6BB

JULY 2024 (REV01)

Prepared for:

Registered Company - GEG Ltd Registered in England No 6469985 Registered Office: Granta Lodge, 71 Graham Rd, Malvern, WR14 2JS

Report Title:

INFILTRATION TESTING & GROUNDWATER MONITORING REPORT

Site Address:

Land at Cheapside Harpenden Road St Albans Hertfordshire AL3 6BB

Performed By:

Geo Environmental Group GEG House 17 Graham Road Malvern WR14 2HR

On Behalf of:

Hallam Land Management c/o PJA Park Point High Street Longbridge Birmingham B31 2UQ

Written by:

Matthew Pal

Matthew Perks BSc(Hons) MSc FGS Principal Geo-Environmental Consultant

Approved by:

Anthony Marriott BSc(Hons) MRSC MIEnvSc FGS Managing Director

Project Reference:

Report Reference:

Issue Status:

Date of Issue:

GEG-24-821

GEG-24-821/IT

FINAL

Rev. 00: 23rd May 2024 Rev. 01: 22nd July 2024

TABLE OF CONTENTS

1.	INTR	ODUCTION	.1
	1.1	General	
	1.2	Available Information	
	1.3	Proposed Site Development	
	1.4	Scope	1
2.	SITE	SETTING	.1
	2.1	Site Location	1
	2.2	Site Description	. 2
3.	GEOI	LOGY & HYDROGEOLOGY	2
-	3.1	Published Geology	. 2
	3.2	Hydrogeology	
		3.2.1 Groundwater Designation	. 3
	3.3	Potential Water Infiltration Properties of the Strata	
	3.4	Groundwater Source Protection Zone	
	3.5	Surface Water Flooding	. 3
4.	INTR	USIVE INVESTIGATION	3
	4.1	Site Works Overview	• 4
	4.2	Scope of Works – Stage 1	• 4
		4.2.1 Window Sample Holes	
		4.2.2 Trial Pits	
	4.3	Scope of Works – Stage 2	
		4.3.1 Window Sample Holes	
		4.3.2 Trial Pits	
	4.4	Strata Encountered 4.4.1 Made Ground	
		4.4.2 Topsoil	
		4.4.2 Topson 4.4.3 Kesgrave Catchment Subgroup	· Э 5
		4.4.4 Clay-with-Flints Formation	. 5
		4.4.5 Lewes Nodular & Seaford Chalk Formations	
		4.4.6 Groundwater	
		4.4.7 Falling Head Permeability Tests	. 6
		4.4.8 Stability of Trial Pits	7
		4.4.9 Reinstatement	
	4.5	Infiltration Tests	
	4.6	Calculated Infiltration Rates	
5۰	CON	CLUSIONS	8
6.	REFF	ERENCES	9
7.	LIMI	TATIONS	9
			1

Title

Appendix

FIGURES AND PLANS	A
Site Location Plan Exploratory Hole Location Plan	
PHOTOGRAPHIC RECORD	B
EXPLORATORY HOLE LOGS	C
INFILTRATION TEST DATA	D
FALLING HEAD TESTS	E

1. INTRODUCTION

1.1 General

Geo Environmental Group (GEG) were commissioned by PJA on behalf of their client, Hallam Land Management (HLM), to undertake staged infiltration testing and groundwater monitoring at a site known as 'Land at Cheapside, St Albans,' for the purpose of determining infiltration rates of the underlying shallow strata and hence the suitability of the site for soakaway drainage.

1.2 Available Information

The following drawings was supplied by PJA:

- 'Potential GI Locations Plan,' PJA on behalf of HLM, Drawing No. 0100, Rev. P01, dated 27th September 2023.
- 'Indicative Surface Water Drainage Strategy GI Plan,' PJA on behalf of HLM, Drawing No. 05920-GR-0534, Rev. P01, June 2024.
- 'Master Utilities Map,' WSP on behalf of HLM, Drawing No. 70039336, Rev. P01, dated January 2018.

1.3 Proposed Site Development

The site is being considered for residential development.

1.4 Scope

The works performed by GEG included:

- Trial pitting with infiltration testing in accordance with a specification supplied by PJA.
- Window sample boreholes with installation of standpipes.
- Calculation of infiltration rates, subject to ground conditions encountered.
- Groundwater monitoring of standpipes.

Limitations to the scope of the report are outlined in Section 7.

2. SITE SETTING

2.1 Site Location

The site is located on land approximately 3 km north of St Albans city centre, at the approximate National Grid Reference 515461E, 209983N. It lies on land adjacent to the west of Harpenden Road (A1081) and is bisected by Sandridgebury Lane, and covers an area of approximately 48 ha.

A section of the 1:25,000 Ordnance Survey (OS) map identifying the site location is shown in Figure 1 of Appendix A and a photographic record is provided in Appendix B.

2.2 Site Description

The site, which fell gently to the south east, comprised agricultural land across the majority with sports fields associated with the Old Albanian Rugby Club in the far eastern section.

3. GEOLOGY & HYDROGEOLOGY

3.1 Published Geology

Reference to the 1:50,000 scale British Geological Survey digital mapping of the area (solid and drift) indicates that the solid geology beneath the site comprises the Lewes Nodular Chalk and Seaford Chalk Formations (of the White Chalk Subgroup) of the Cretaceous period. The formations, which were formerly part of the Upper Chalk, are described individually as follows:

- Lewes Nodular Chalk Formation: hard to very hard nodular chalks and hardgrounds with interbedded soft to medium hard chalks and marls. Nodular chalks are typically lumpy and iron-stained. Brash is rough and flaggy or rubbly, and tends to be dirty.
- Seaford Chalk Formation: firm white chalk with conspicuous semicontinuous nodular and tabular flint seams. Some flint nodules are large to very large.

The solid geology is conjectured to be overlain by superficial deposits locally of Claywith-Flints Formation across the north western margins, and the Kesgrave Catchment Subgroup is present locally centrally and along the south eastern margins of the site. The superficial deposits are described as follows:

- The Clay-with-Flints Formation: a residual deposit formed from the dissolution, decalcification and cryoturbation of bedrock strata of the Chalk Group and Palaeogene formations. It is unbedded and heterogenous. The dominant lithology is orange-brown and red-brown sandy clay with abundant nodules and rounded pebbles of flint. The deposit locally includes bodies of yellow fine- to medium- grained sand, reddish brown clayey silt, and sandy clay with beds of well-rounded flint pebbles.
- The Kesgrave Catchment Subgroup: *mainly gravels characterised by quartz and quartzite*.

No significant faults are conjectured to intersect the site at the surface.

3.2 Hydrogeology

3.2.1 Groundwater Designation

Environment Agency data indicates that the solid geology beneath the site is designated as a Principal Aquifer.

Principal Aquifers as assigned where geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers.

The superficial deposits of the Clay-with-Flints Formation are characterised as Unproductive strata and the Kesgrave Catchment Subgroup as a Secondary A Aquifer.

Secondary A Aquifers are defined as permeable layers capable of supporting water supplies at a local rather than a strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

Unproductive Strata - are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

3.3 Potential Water Infiltration Properties of the Strata

The Clay-with-Flints Formation is considered unlikely to be sufficiently permeable for soakaway drainage. Therefore, the solid geology chalk formations or the soils of the Kesgrave Catchment Subgroup were targeted for the soakaway testing (where encountered).

3.4 Groundwater Source Protection Zone

The site lies within the Total Catchment (Zone 3) of a currently defined Groundwater Source Protection Zone (GWSPZ), as such it is recommended that any specific Environment Agency requirements with respect to soakaways etc. are adhered to.

3.5 Surface Water Flooding

According to the Environment Agency online 'Flood Map for Planning', the site lies within Flood Zone 1, being land that lies outside the 1 in 1000 year (0.1%AEP) flood risk area and hence has a low probability of flooding.

4. INTRUSIVE INVESTIGATION

The following section outlines the scope of the intrusive investigation undertaken by GEG and details the ground conditions encountered and the infiltration testing carried out.

4.1 Site Works Overview

All works were carried out in accordance with current British Standard guidance (BS: 5930 and BS: 10175) and infiltration testing in general accordance with BRE Digest 365 (Soakaway Design).

The ground conditions were logged by an experienced geo-environmental engineer from GEG. The strata encountered, groundwater levels/seepages, and stability of excavations are recorded on the exploratory hole logs presented in Appendix C.

The locations of the exploratory holes are shown on Figure 2 presented in Appendix A.

4.2 Scope of Works – Stage 1

The Stage 1 intrusive investigation was undertaken from 10^{th} and 11^{th} April 2024 and comprised window sample boreholes, machine-excavated trial pitting, and infiltration testing.

4.2.1 Window Sample Holes

6 No. window sample boreholes (WS01-WS06) were drilled using a Competitor Dart dynamic sampling rig to a maximum depth of 5.00 m. Continuous sampling was undertaken using a liner system.

All boreholes were installed with 50 mm diameter standpipes to the depth detailed on the exploratory hole log for subsequent groundwater monitoring.

4.2.2 Trial Pits

3 No. trial pits (IT01-IT03) were excavated using a JCB-3CX to depths of between 2.00 and 2.75 m to facilitate investigation of the near surface soils and undertake infiltration testing.

4.3 Scope of Works – Stage 2

The Stage 2 intrusive investigation was undertaken on 4^{th} July 2024 and comprised additional window sample boreholes, machine-excavated trial pitting, and infiltration testing.

4.3.1 Window Sample Holes

4 No. window sample boreholes (WS07-WS10) were drilled using a Competitor Dart dynamic sampling rig to a maximum depth of 6.00 m. Continuous sampling was undertaken using a liner system.

WS07 was installed with a 50 mm diameter standpipe to the depth detailed on the exploratory hole logs for subsequent groundwater monitoring.

4.3.2 Trial Pits

4 No. trial pits (IT04-IT07) were excavated using a JCB-3CX to depths of between 2.20 and 2.80 m to facilitate investigation of the near surface soils and undertake infiltration testing.

4.4 Strata Encountered

The ground conditions encountered are described below and broadly confirmed the published geology.

4.4.1 Made Ground

Made Ground of reworked topsoil was encountered at 1 No. location (IT03) to a depth of 0.20 m and comprised soft to firm CLAY with occasional gravel-sized fragments of quartzite and ceramic.

4.4.2 Topsoil

Natural topsoil of soft to firm CLAY was encountered in the remaining locations to depths of between 0.20 and 0.30 m.

4.4.3 Kesgrave Catchment Subgroup

The Kesgrave Catchment Subgroup was not encountered during the investigation.

4.4.4 Clay-with-Flints Formation

The Clay-with-Flints Formation was encountered underlying the topsoil and Made Ground at all locations to depths (where proven) of between 1.35 and 5.50 m. It typically comprised firm to very stiff variably sandy gravelly CLAY and locally medium dense to dense clayey gravelly to very gravelly SAND.

4.4.5 Lewes Nodular & Seaford Chalk Formations

The Lewes Nodular & Seaford Chalk Formations were encountered underlying the Clay-with-Flints Formation at 9 No. locations (IT01, IT04, IT07, WS01-WS03, WS06, WS08, WS10) from depths of between 1.35 and 5.50 m to the base of the exploratory holes. It typically comprised structureless CHALK composed of variably gravelly SILT (Grades Dm to Dc).

It is noted that discernment of chalk grade from disturbed borehole samples is inherently difficult as drilling disrupts the natural structure of the chalk. As such, chalk grade boundaries may vary from those interpreted.

4.4.6 *Groundwater*

Groundwater was not encountered in any of the exploratory holes during the intrusive investigation.

Groundwater levels recorded in the boreholes during the subsequent monitoring visits to date are summarised in Table 1.

Borehole	Date	Depth of Installation (m)	Groundwater Depth (m)
	09/05/24		(Damp at 5.00)
WS01	11/06/24	5.00	(Damp at 5.00)
	04/07/24		Dry

Table 1. Groundwater Levels Recorded During the Monitoring Visits

Borehole	Date	Depth of Installation (m)	Groundwater Depth (m)
WS02	09/05/24 11/06/24 04/07/24	5.00	Dry Dry Dry
WS03	09/05/24 11/06/24 04/07/24	5.00	Dry (Damp at 5.00) 5.00
WS04	09/05/24 11/06/24 04/07/24	2.00	0.53 1.34 1.90
WS05	09/05/24 11/06/24 04/07/24	1.80	Dry 1.20 1.58
WS06	09/05/24 11/06/24 04/07/24	5.00	(Damp at 5.00) Dry Dry

It should be noted that groundwater levels may vary due to seasonal and other effects.

4.4.7 Falling Head Permeability Tests

2 No. falling head tests were undertaken in borehole WSo6. Clean water was dispensed from containers at a rapid rate to fill each borehole as quickly as possible.

4.4.7.1 Calculated Permeability Rates

The falling head test data and soakage rates were calculated based on guidance given in the Kent County Council Soakaway Design Guide (2000) and are presented in Appendix E.

The soakage rate calculated is summarised in Table 2 below.

Table 2. Borehole Soakage Rate

Location	Test No.	Date	Borehole Soakage Rates (l/m²/min)
	1	09/05/24	2.65 ^[1]
WS06	2	11/06/24	4.08 [1]
	3	-	-

[1] Approximately 75 litres of water was poured into the standpipe (at a rapid rate) in order to conduct the test at the depth indicated.

Please note that this value is considered relatively high and indicates that potential soakage within the chalk is a likely occurrence.

4.4.8 Stability of Trial Pits

The sides of the trial pit excavations were typically stable with the exception of slight instability below 2.20 m in IT03, below 1.50 m in IT04, below 0.40 m in IT05, and below 0.30 m in IT06.

4.4.9 Reinstatement

On completion of the measurements, the infiltration pits were emptied of residual water and backfilled with arisings.

4.5 Infiltration Tests

A total of 10 No. infiltration tests were undertaken in the 7 No. trial pits (ITO1 to ITO7). The tests were undertaken in general accordance with BRE Digest 365.

Clean water was dispensed from a bowser at a rapid rate to fill each excavation as quickly as possible to the proposed depth of the invert levels and/or the most permeable strata. The excavations took less than 5 minutes to fill. Each test pit was filled to give a head of water of approximately 1.00m.

Measurements were then taken of the fall of water at suitable time increments to allow the infiltration rate to be calculated from the time taken for the water level to drop from 75% to 25% effective depth (where possible). If there was sufficient time, the tests were repeated a maximum of three times in accordance with BRE Digest 365.

On completion of the measurements, the infiltration pits were backfilled with arisings.

The water level measurements from the infiltration tests are tabulated and graphically depicted on Figures F-1 to F-5 in Appendix D.

4.6 Calculated Infiltration Rates

The effective depths reached during the tests and associated times are summarised in Table 3 below.

Table 3.	Infiltration	Test	Results
----------	--------------	------	---------

Location	Depth Range of Test (m)	Test No.	Strata [1]	Effective Depth Reached	Time (mins)	Infiltration Rate (m/s)
	1.30 - 2.40	1	CwF (C) / CHK	25%	115	2.96 x 10 ^{-5 [2]}
IT01	1.05 - 2.08	2			132	2.63 x 10 ⁻⁵
	1.01 - 1.82	3			119	2.97 X 10 ^{-5 [2]}
IT02	1.00 - 2.00	1	CwF (C)	97%	217	N/A
IT03	1.45 - 2.75	1	CwF (C) / CwF (G)	104%	194	N/A
IT04	1.20 - 2.00	1	CwF (C) /	25%	105	2.60 x 10 ⁻⁵
1104	1.00 - 1.75	2	СНК		165	1.88 x 10 ⁻⁵
IT05	1.40 - 2.40	1	CwF (G)	95%	201	N/A
IT06	1.80 - 2.80	1	CwF (C/G) 101%		195	N/A
IT07	1.40 - 2.50	1	CwF (C) / CHK	96%	183	N/A

N/A=Not Applicable

[1] CwF=Clay with Flints Formation; CHK=Lewes Nodular and Seaford Chalk Formations; C=Cohesive; G=Granular.

[2] Based on extrapolated data (due to partial collapse of trial pit during the test).

5. CONCLUSIONS

The infiltration tests undertaken in ITo1, which was extended into the underlying chalk, yielded infiltration rates of 2.63×10^{-5} to 2.97×10^{-5} m/s, albeit based on some extrapolated data (due to partial collapse of trial pit during the tests). Infiltration tests in ITo4 (also onto the underlying chalk) yielded rates of 2.60×10^{-5} and 1.88×10^{-5} m/s. The falling head tests undertaken in the chalk strata of WSo6 yielded a borehole soakage rate of 2.65 and $4.08 \text{ l/m}^2/\text{min}$.

The water levels did not reach the 25% effective depth for infiltration tests in ITo2, ITo3 and ITo5 to ITo7, which were taken primarily within the typically cohesive strata of the Clay-with-Flints Formation, and consequently no infiltration rates could be calculated. However, the granular strata in ITo3 and ITo5 to ITO7 (and the chalk encountered in ITO7) proved relatively impermeable to infiltration, potentially due to the presence of a significant fines fraction clogging the pores.

Design and positioning of soakaways in chalk will require careful consideration to mitigate risks associated with potential erosion of infilled solution features (if present). All soakaways should be designed and constructed in accordance with BRE 365. Further guidance is also given by documents provided by Kent County Council (July 2000).

6. **REFERENCES**

- 1. British Standard Institute, BS 1377-Parts 1-9: 1990-2016. Methods of Tests for Soils for Civil Engineering Purposes.
- 2. British Standard Institute, BS 5930:2015 + A1:2020. Code of Practice for Site Investigations.
- 3. BRE Digest 365, 2016. Soakaway Design.
- 4. Kent County Council, 2000. The Soakaway Design Guide.

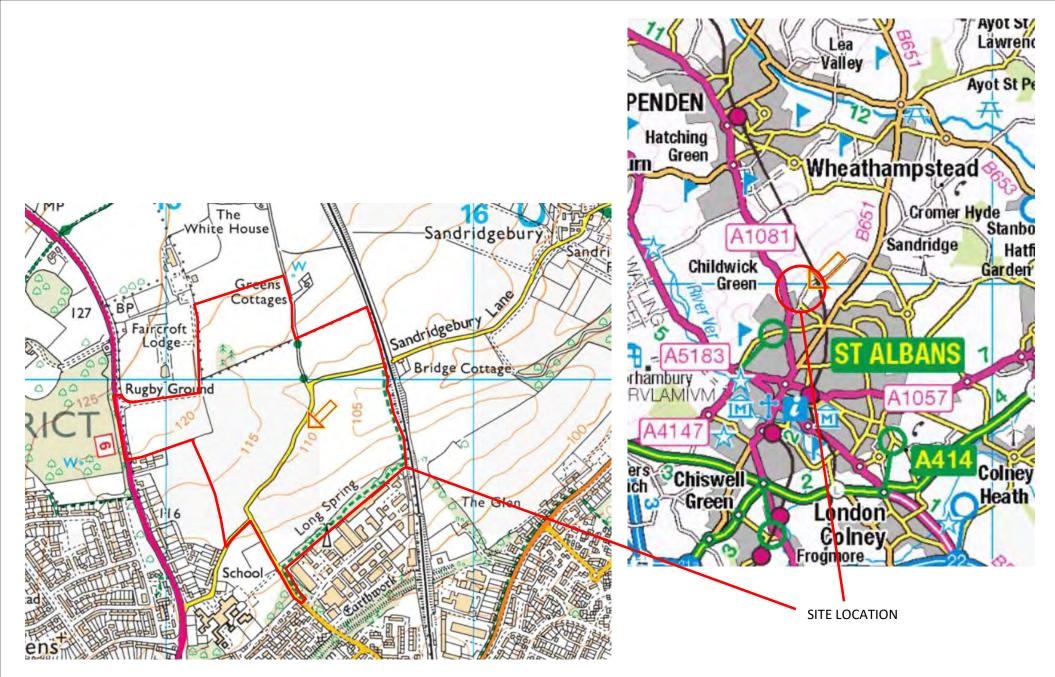
7. LIMITATIONS

As with all intrusive site investigations, there is a possibility that there are local variations in ground conditions not identified by the current investigation.

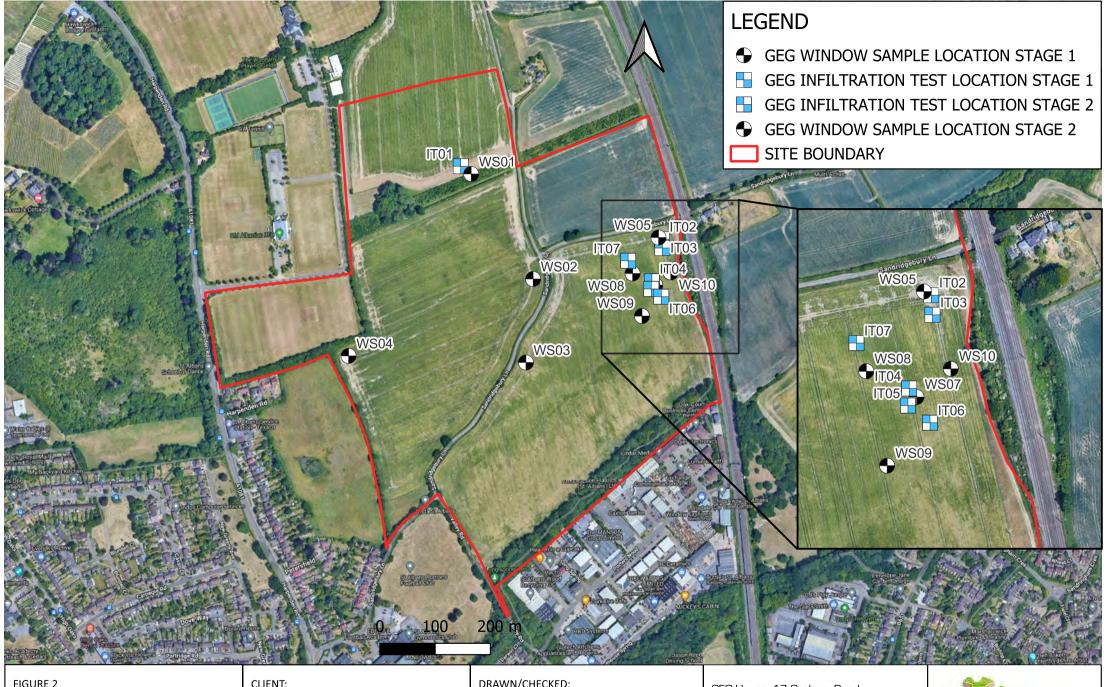
The conclusions and recommendations stated herein are based on information available at the time of production. These may not necessarily apply if the site is to be utilised for a more or less sensitive purpose in the future, or if operational procedures or management alter over time.

GEG maintain intellectual copyright of the contents of this report and grant exclusive use of the material contained herein to the client, the client's agents, the client's respective sub-contractors and the specific local authority. No unauthorised distribution shall be made to any third parties without the prior consent of both GEG and the Client.

GEG shall not be liable by reason of any representation (unless fraudulent), or any implied warranty, condition or other term, or any duty at common law for any loss of profit or any indirect, special or consequential loss, damage, costs, expenses or other claims (whether caused by the negligence of the Supplier, its servants, subcontractors or agents or otherwise) which arise out of or in connection with the provision of the Specified Service or their use by the Client.


It should be noted that any warranty or liability offered or incurred by GEG, related to this report commences from the date of first issue of this report and is not altered by subsequent report revisions.

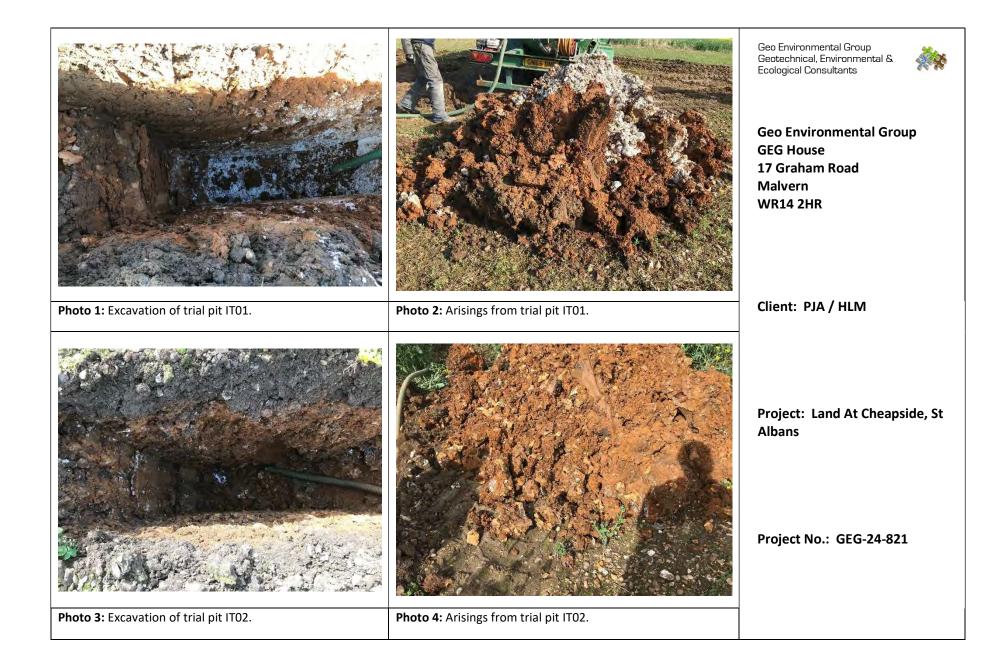
Whilst GEG may identify the presence of potential invasive plant species during the standard geo-environmental walkover and/or investigations, the Client should be aware that ecological issues including an invasive species surveys etc. are beyond the scope of the works and as such no associated liability is accepted by GEG.


APPENDIX A

FIGURES AND PLANS

Ordnance Survey © Crown Copyright 2024 All rights reserved. License number 100048258

TITLE: FIGURE 1: SITE LOCATION PLAN	CLIENT: PJA / HLM		DRAWN/CHECKED: EW / MP		GEG House, 17 Graham Road Malvern, WR14 2HR	Geo	se.
SITE: LAND AT CHEAPSIDE, ST ALBANS	PROJECT No.: GEG-24-821	SCALE: NTS	DATE: 16/05/24	REVISION: A	Tel. 01684 212526 Fax 01684 576917 admin@g-eg.co.uk, www.g-eg.co.uk	Environmental Group	* *


FIGURE 2 EXPLORATORY HOLE LOCATION PLAN	CLIENT: HALLAM LAND MANA	GMENT / PJA	DRAWN/CHECKED: EW / MP		GEG House, 17 Graham Road Malvern, WR14 2HR Tel. 01684 212516
SITE:	PROJECT NUMBER:	SCALE:	DATE:	REVISION:	Fax. 01684 576917
LAND AT CHEAPSIDE, ST ALBANS	GEG-24-821	AS SHOWN	30/07/24	2	admin@g-eg.co.uk, www.g-eg.co.uk

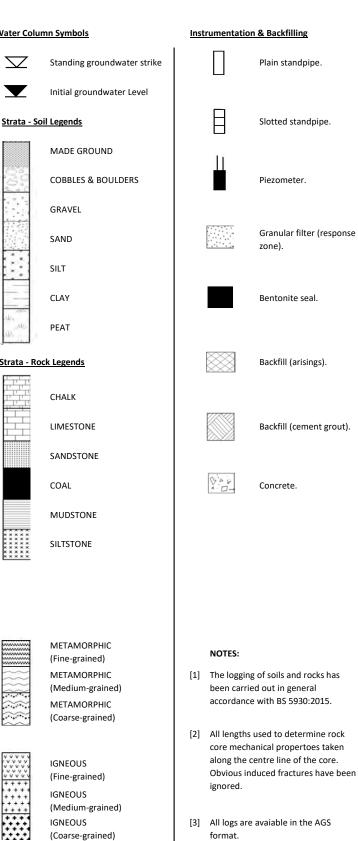
APPENDIX B

PHOTOGRAPHIC RECORD

		Geo Environmental Group Geotechnical, Environmental & Ecological Consultants Geo Environmental Group GEG House 17 Graham Road Malvern WR14 2HR
Photo 5: Excavation of trial pit IT03.	Photo 6: Arisings from trial pit IT03.	Client: PJA / HLM
		Project: Land At Cheapside, St Albans
		Project No.: GEG-24-821

APPENDIX C

EXPLORATORY HOLE LOGS


EXPLORATORY HOLE LOG RECORDS:

Symbols & Abbreviations Legend

Sampling		Water Colur	mn Symbols
В	Bulk disturbed sample.		Standing grou
BLK	Block sample.		Initial ground
с	Core run.	<u>Strata - So</u>	il Legends
CR	Core cutter sample.		MADE GROUN
CS	Core sample taken from rotary core.	000 c	COBBLES & BC
D	Small disturbed sample.		GRAVEL
ES	Composite environmental soil sample.		SAND
EW	Environmental water sample.		SILT
L	Continuous percussive sample (plastic liner).		CLAY
LB	Large disturbed sample.	Niz., Alz.,	PEAT
U	Undisturbed driven tube sample (100 mm diameter, 450 mm long). No. of blows indicated in brackets.	<u>Strata - Ro</u>	ck Legends
w	Water sample.		CHALK
In-situ Testing	4		LIMESTONE
HVP	Hand Vane Measurement. Value given as shear strength Su (in kPa).		SANDSTONE
РР	Pocket Penetrometer (Unconfined Compressuve Strength measured in kPa).		COAL
SPT	Standard Penetration Test using a split spoon sampler.		MUDSTONE
SPTC	Standard Penetration Test using a solid 60 degree cone.	× × × × × × × × × × × × × × × × × × ×	SILTSTONE
N	The 'N' value is the No. of blows required to complete a test drive of 300 mm after a seating drive of 150 mm or 25 blows.		
N = 50	Where the full test drive is not completed. A linearly extrapolated 'N' value can be derived.		
PID	Photo Ionisation Detector reading in ppm.		METAMORPH (Fine-grained)

Drilling Records

TCR Total SCR Solid RQD Pract FI Fract NI Non-	Water flush returns.
TCR	Total Core Recovery (%).
SCR	Solid Core Recovery (%).
RQD	Rock Quality Designation (% of intact core >100 mm).
FI	Fracture Index (Fractures/m).
NI	Non-intact core.
NR	No core recovery.

Geo

Group

Environmental

		Geo Environmen	tal Group			Во	reho	ole Log	Borehole No. WS01 Sheet 1 of 1	
roiec	t Name:			eide Stainane	Project No.		Co-ords:	515345E - 210128N	Hole Type	
ocatio			-	side, St Albans, AL	GEG-24-821		Level:		WS Scale	
	JII.		-	Side, St Albans, AL					1:31 Logged B	v
lient:		HLM / P				1	Dates:	10/04/2024	КТ	, T
Nell	Water Strikes	Sample Depth (m)	and In	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
					0.00			Soft to firm dark brown slightly sandy low cobble content CLAY. Gravel is fi rounded to sub-angular flint. (TOPSOIL) Firm to stiff orangish brown slightly si CLAY. Gravel is sub-angular to sub-r	ne to coarse sub- andy gravelly	0.5
		1.20	SPT	N=17 (2,3/4,5,4,4)				coarse flint. (CLAY WITH FLINTS FORMATION)		1.0
					1.35			Structureless CHALK composed of fi slightly gravelly SILT with occasional and cobble clasts are sub-angular ex density and white and occasionally fi (LEWES NODULAR & SEAFORD CI FORMATION)	cobbles. Gravel tremely weak low int. (Grade Dm)	1.5
		2.00	SPT	N=17 (3,3/4,4,4,5)						2.
		3.00	SPT	N=19 (3,4/5,4,5,5)	3.00			Structureless CHALK composed of s with yellow to brown thin vein discolo gravelly SILT with occasional cobbles cobble clasts are sub-angular extrem low to medium density chalk and flint Dc)	urations slightly s. Gravel and lely weak creamy	- 3.
		4.00	SPT	N=14 (3,2/3,3,4,4)				(LEWES NODULAR & SEAFORD CI FORMATION)	HALK	3.
										4.:
		5.00	SPT	N=18 (3,4/5,4,4,5)						5.(
					5.45		<u>, , n, n, n, ,</u>	End of Borehole at 5.45	0m	5.5

1. No groundwater encountered. 2. 50mm standpipe installed to 5.00m. Response zone 1.00-5.00m, bentonite seal 1.00-0.300 concrete cover 0.30-0.00m. 3. Equipment used: Competitor Dart WS rig. 4. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

		Geo Environmen	tal Group		Droig at No.	Bo	oreho	ole Log	Borehole No. WS02 Sheet 1 of 1 Hole Type	
Project N	Name:	Land at	Cheap		Project No. GEG-24-821		Co-ords:	515457E - 209938N	WS Scale	;
ocation	1:	Land at	Cheap	side, St Albans, AL3	3 6BB		Level:		1:31	
lient:		HLM / P	JA				Dates:	11/04/2024	Logged B KT	у
	Nater Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	on	
	strikes -	Depth (m) 1.20 2.00 3.00 4.00	SPT SPT SPT SPT	Results N=17 (3,4/5,4,4,4) N=22 (3,5/5,6,5,6) N=8 (2,3/1,2,3,2) N=11 (3,2/2,2,3,4) N=19 (4,3/4,5,5,5)	(m) 0.00 0.30 2.10			Soft to firm dark brown slightly sandy CLAY. Gravel is fine to coarse sub-a rounded flint. (TOPSOIL) Firm to stiff orangish brown very san gravelly low cobble content CLAY. G coarse sub-angular flint. (CLAY WITH FLINTS FORMATION) 1.20-2.10m Becoming stiff. Structureless CHALK composed of s with yellow and brown veins slightly occasional cobbles. Gravel and cobt angular extremely weak chalk and fli Dc) (LEWES NODULAR & SEAFORD C FORMATION) 2.85m 7cm Band of grey flint.	y slightly gravelly ngular to sub- dy slightly ravel is fine to soft creamy white gravelly with ole clasts are sub- nt. (Grade Dm -	0.5 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0
					5.45		· · · · · · · ·	End of Borehole at 5.45	50m	5.5

1. No groundwater encountered. 2. 50mm standpipe installed to 5.00m. Response zone 1.00-5.00m, bentonite seal 1.00-0.30m, concrete cover 0.30-0.00m. 3. Equipment used: Competitor Dart WS rig. 4. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

		Geo Environmen	tal Group			Во	reho	ole Log	Borehole N WS03 Sheet 1 of	3 f 1
Projec	t Name:	Land at	Cheap		Project No. GEG-24-821		Co-ords:	515444E - 209787N	Hole Typ WS	e
ocatio	on:	Land at	Cheap	side, St Albans, AL	3 6BB		Level:		Scale 1:31	
lient:		HLM / P	уJA				Dates:	11/04/2024	Logged B KT	Зу
Well	Water Strikes	Sample Depth (m)	e and li	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	on	
		Doput (iii)	1900		0.00			Soft to firm dark brown slightly sandy CLAY. Gravel is fine to coarse sub-a rounded flint. (TOPSOIL) Stiff orangish brown slightly sandy sl	ngular to sub-	
								with low boulder content CLAY. Grav coarse sub-angular to sub-rounded f (CLAY WITH FLINTS FORMATION)	lint.	0.5
		1.20	SPT	N=12 (2,3/2,3,3,4)						1.0
		2.00	SPT	N=15 (3,4/4,4,3,4)	1.95			Structureless CHALK composed of f	irm to stiff creamy	2.0
				- (, , , , , , , , , , , , , , , , , ,				white with yellow and brown veins sl SILT with occasional cobbles. Grave clasts are fine to coarse sub-angular low density chalk and flint. (Grade D (LEWES NODULAR & SEAFORD C FORMATION)	ightly gravelly I and cobble extremely weak m - Dc)	2.5
		3.00	SPT	N=19 (4,5/4,5,6,4)						3.0
		4.00	SPT	N=21 (4,5/5,5,5,6)						3.5
		4.00	571	N=21 (4,3/3,3,5,6)						4.0
		5.00	SPT	N=23 (3,4/6,6,5,6)						5.0
					5.45		, <u> ' , ' , ' , '</u>	End of Borehole at 5.45	50m	5.5
emar	ks									

1. No groundwater encountered. 2. 50mm standpipe installed to 5.00m. Response zone 1.00-5.00m, bentonite seal 1.00-0.30 concrete cover 0.30-0.00m. 3. Equipment used: Competitor Dart WS rig. 4. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

	Geo Environmen	ital Group			Во	reho	ole Log	Borehole N WS04 Sheet 1 of	
Project Name	e: Land at	Cheap	eide St Albane	Project No. GEG-24-821		Co-ords:	515123E - 209799N	Hole Type WS	
Location:	Land at	Cheap	side, St Albans, AL	3 6BB		Level:		Scale 1:31	
Client:	HLM / F	РJA				Dates:	10/04/2024	Logged By KT	y
Well Water			n Situ Testing	Depth	Level	Legend	Stratum Description	n	
Well Strike:		SPT	Results N=17 (3,4/5,4,4,4) N=50 (10,10/50 fo 245mm)	(m) 0.00 0.30			Soft to firm dark brown slightly sandy CLAY. Gravel is fine to coarse sub-an rounded flint. (TOPSOIL) Firm to stiff orangish brown slightly se gravelly low boulder content CLAY. G coarse sub-angular to sub-rounded fli (CLAY WITH FLINTS FORMATION) 1.20-2.40m Becoming stiff. 2.00-2.40m Becoming very stiff. 2.40m Flint boulder. End of Borehole at 2.400	slightly gravelly gular to sub- andy slightly ravel is fine to nt.	0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0 - 3.5 - 4.0 - 4.5 - 5.0 -
									5.5
Remarks 1. No ground concrete cov	water encounter er 0.30-0.00m. 3	red. 2. 5 3. Equip	50mm standpipe in ment used: Compe	stalled to 2.00 etitor Dart WS	m. Respo rig. 4. Re	onse zone 1 fusal on flir	.00200m, bentonite seal 1.00-0.30 It boulder.	0m,	

		Geo Environment	tal Group		Project No.	Bo	oreho	ole Log	Borehole N WS05 Sheet 1 of Hole Type	1
Project Na	ime:	Land at	Cheap		6EG-24-821		Co-ords: 515684E - 210013N		WS	
Location:		Land at	Cheap	side, St Albans, AL3	3 6BB		Level:		Scale 1:31	
Client:		HLM / P	JA				Dates:	11/04/2024	Logged By KT	у
	ater			n Situ Testing	Depth	Level	Legend	Stratum Description	n	
Well Stril		Depth (m) 1.20 1.80	SPT	Results N=39 (3,4/10,10,9,10 50 (10,10/50 for 205mm)	(m) 0.00 0.30		Legend	Soft to firm dark brown slightly sandy CLAY. Gravel is fine to coarse sub-an- rounded flint. (TOPSOIL) Firm to stiff orangish brown with light 4 discolourations sandy slightly gravelly fine to coarse sub-angular to sub-rour (CLAY WITH FLINTS FORMATION) 1.20-1.45m Becoming very stiff. Dense reddish to orangish brown very gravelly SAND. Gravel is fine to coars sub-rounded flint. (CLAY WITH FLINTS FORMATION) 1.80m Becoming very dense. End of Borehole at 2.155	slightly gravelly gular to sub- grey webbed r CLAY. Gravel is nded flint.	
										5.0 - 5.5 ·
Remarks 1. No grou	indwa	iter encounter 0.30-0.00m. 3	ed. 2. s	50mm standpipe ins	talled to 1.80	m. Respo rig. 4. Re	onse zone 1 fusal on ve	.00-1.80m, bentonite seal 1.00-0.30 ry dense sand.)m,	-

		Geo Environmen	tal Group			Во	reho	ole Log	Borehole N WS06 Sheet 1 of	6
Projec	t Name:	Land at	Cheap	eide StAlbane	Project No. GEG-24-821		Co-ords:	515414E - 210159N	Hole Type WS	Э
Locati	on:	Land at	Cheap	side, St Albans, AL3	3 6BB		Level:		Scale 1:31	
Client:		HLM / P	РJA				Dates:	10/04/2024	Logged B KT	у
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depth (m) 1.20 2.00 3.00	SPT SPT	Results N=23 (3,5/6,5,6,6) N=29 (4,7/6,8,8,7) N=12 (3,4/3,4,2,3)	2.90			Soft to firm dark brown slightly sandy CLAY. Gravel is fine to coarse sub-any rounded flint. (TOPSOIL) Stiff orangish brown slightly sandy gra Gravel is fine to coarse sub-angular to flint. (CLAY WITH FLINTS FORMATION) Stiff orangish brown slightly sandy slig CLAY with dark organic discolouration to coarse sub-angular to sub-rounded sub-angular boulders up to 15cm dian (CLAY WITH FLINTS FORMATION) Firm to stiff orangish brown slightly sa gravelly CLAY. Gravel is sub-angular the flint and rare sub-angular boulders up diameter. (CLAY WITH FLINTS FORMATION) Structureless CHALK composed of fir with yellow and brown veins slightly go ccasional cobbles. Gravel and cobble to coarse sub-angular low density cha (Grade Dm - Dc) (LEWES NODULAR & SEAFORD CH	yular to sub- ivelly CLAY. b sub-rounded intity gravelly . Gravel is fine flint with rare neter. ndy slightly to sub-rounded to 15cm m creamy white ravelly SILT with e clasts are fine ilk and flint.	0.5 1.0 1.5 2.0 2.5 3.0
Remar		4.00	SPT	N=4 (1,2/1,1,1,1) N=9 (2,3/2,2,3,2)	5.45			(LEWES NODULAR & SEAFORD CH FORMATION) End of Borehole at 5.450		3.5 4.0 4.5 5.0 5.5

1. No groundwater encountered. 2. 50mm standpipe installed to 5.00m. Response zone 1.00-5.00m, bentonite seal 1.00-0.30m, concrete cover 0.30-0.00m. 3. Equipment used: Competitor Dart WS rig. 4. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

		Geo Environmen	tal Group			Во	reho	ole Log	Borehole N WS07 Sheet 1 of	
Projec	t Name:	Land at	Cheap		Project No. GEG-24-821		Co-ords:	515678E - 209927N	Hole Type WS)
ocati	on:	Land at	Cheap	side, St Albans, AL	3 6BB		Level:		Scale 1:31	
lient:		HLM / P	уJA				Dates:	04/07/2024	Logged By KT	¥
Well	Water Strikes	Sample Depth (m)	e and li Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		1.20 2.00 3.00 4.00 5.00	SPT SPT SPT	N=20 (3,4/4,5,6,5) N=11 (3,3/3,4,2,2) N=18 (4,4/8,4,3,3) N=15 (4,4/4,4,3,4)				Firm dark brown slightly sandy gravell is fine to cobbles of angular to sub-rou yellowish flint and greyish reddish sub quartzite cobbles. (TOPSOIL) Firm to stiff yellowish brown sandy gra low boulder content, common gravel lo dark possible fossilised rootlets after 2 and boulders are rounded to sub-angu greyish flint with rare quartzite. (CLAY WITH FLINTS FORMATION)	Avelly CLAY with enses and rare 2.00m. Gravel ular to angular	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
					5.45			End of Borehole at 5.450)m	5.5
emar	ke									

1. No groundwater encountered. 2. 50mm standpipe installed to 5.00m. Response zone 1.00-5.00m, bentonite seal 1.00-0.3 concrete cover 0.30-0.00m. 3. Equipment used: Competitor Dart WS rig. 4. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

		Geo Environmen	tel Group			Во	reho	ole Log	Borehole N	6	
Projec	t Name:				Project No. GEG-24-821		Co-ords:	515637E - 209948N	Sheet 1 of Hole Type		
Locati	on:	Land at	Cheap	side, St Albans, AL			Level:		WS Scale 1:31	Scale	
Client:		HLM / P	РJA		Dates: 04/07/2024				Logged By KT	у	
Well	Water Strikes	-		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description			
		Depth (m)	Туре	Results	0.00		5 8-5	Firm dark brown slightly sandy gravel is fine to cobbles of angular to sub-rou yellowish flint and greyish reddish sub quartzite cobbles. (TOPSOIL) Stiff reddish brown sandy very gravell boulder content. Gravel and boulders to angular greyish flint. (CLAY WITH FLINTS FORMATION)	unded greyish p-rounded	0.5	
		1.20	SPT	N=25 (4,6/6,8,6,5)						1.5	
		2.00	SPT	N=17 (3,4/5,4,3,5)						2.0 -	
		3.00	SPT	N=10 (2,3/2,3,2,3)			2.5.10.6.10.5.10.5.10.5.10 1.1.0.1.0.1.0.1.0.1.0.1 1.1.0.1.0.1.0.1.0.1 1.1.0.1.0.1.0.1.0.1 1.1.0.1.0.1.0.1.0.1.0.1 0.0.100.100.100.100.10.100 0.0.100.100.100.100.100			3.0 -	
		4.00	SPT	N=8 (2,2/2,2,2,2)						4.0 -	
		5.00	SPT	N=5 (1,1/1,1,2,1)						5.0 -	
					5.50			Structureless CHALK composed of fir gravelly to gravelly clay. Clasts are su sub-angular flint and low to medium d (GRADE Dm-Dc) (LEWES NODULAR & SEAFORD CH FORMATION) End of Borehole at 6.000	lb-rounded to lensity chalk. IALK	- 5.5	

1. No groundwater encountered. 2. Equipment used: Competitor Dart WS rig. 3. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

		Geo Environmen	ital Group		Project No.	Bo	oreho	ole Log	Borehole N WS09 Sheet 1 of Hole Type	1
	t Name:			side, St Albans	GEG-24-821		Co-ords:	515654E - 209871N	WS Scale	;
Locati	on:		Cneap	side, St Albans, Al	-3 088		Level:		1:31 Logged By	
Client:		HLM / F	PJA				Dates:	04/07/2024	KT	,
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		Depth (m) 1.20 2.00	SPT SPT	Results N=17 (3,3/4,5,4,4 N=12 (3,3/3,3,3,3	0.00 0.20			Firm dark brown slightly sandy gravell is fine to cobbles of angular to sub-rou yellowish fint and greyish reddish sub quartzite cobbles. (TOPSOIL) Firm and stiff yellowish brown sandy g with low boulder content, common gra rare dark possible fossilised rootlets a Gravel and boulders are rounded to si angular greyish flint with rare quartzite dark sand sized discolouration after 1. small chalk cobble at 4.95m could be (CLAY WITH FLINTS FORMATION)	Inded greyish -rounded gravelly CLAY ivel lenses and fter 2.00m. ub-angular to a and common .5m. Possible	0.5
		3.00	SPT	N=15 (2,2/2,3,5,5)					2.5 3.0 3.5
		4.00	SPT	N=30 (2,7/8,9,8,5)					4.0
		5.00	SPT	N=18 (1,2/6,5,4,3) 5.45			End of Borehole at 5.450)m	5.0
Rema										

1. No groundwater encountered. 2. Equipment used: Competitor Dart WS rig. 3. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

up		Bo	reho	ole Log	Borehole No WS10 Sheet 1 of	
eapside, St Albans	Project No. GEG-24-821		Co-ords:	515706E - 209950N	Hole Type WS	
eapside, St Albans, A			Level:		Scale 1:31	
			Dates:	04/07/2024	Logged By KT	/
d In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	I	
PT N=8 (1,1/2,2,2,2	0.00 0.20			Firm dark brown slightly sandy gravell is fine to cobbles of angular to sub-rou yellowish flint and greyish reddish sub- quartzite cobbles. (TOPSOIL) Stiff reddish brown sandy very gravelly boulder content. Gravel and boulders a to angular greyish flint. (CLAY WITH FLINTS FORMATION)	nded greyish rounded	0.5
PT N=7 (2,2/1,1,2,3	3) 2.40			Structureless CHALK composed of firr	n slightly	2.0 -
PT N=10 (3,1/1,1,4,4	4)			gravelly to gravelly clay. Clasts are sub sub-angular flint and low to medium de (GRADE Dm-Dc) (LEWES NODULAR & SEAFORD CH, FORMATION)	p-rounded to ensity chalk.	2.5 3.0 3.5
PT N=6 (1,2/1,2,1,2	2)					4.0 4.5
PT N=8 (2,1/1,2,2,3	5.45			Flinty gravel band.	m	5.0 -
'Т 	N=8 (2,1/1,2,2,3	N=8 (2,1/1,2,2,3) 5.45			N=8 (2,1/1,2,2,3)	N=8 (2,1/1,2,2,3)

1. No groundwater encountered. 2. Equipment used: Competitor Dart WS rig. 3. Discernment of chalk grade is inherently difficult where drilling disrupts the natural structure of the chalk.

Geo Environn	mental Group						ial Pit Log	TrialPit IT01 Sheet 1	l of 1
Project Name:	Land at Ch	neapside,	St Albans		ect No. -24-821		Co-ords: 515326.00 - 210142.00 Level:	Date 10/04/20	
Locatio	n: Land at Ch	neapside.	, St Albans, AL3				Dimensions 2.50	Scale	;
Client:	HLM / PJA						(m): Depth ö	1:25 Logge	
		bles & In Sit	u Testina				2.40	KT	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.00			Soft to firm dark brown slightly sandy slightly grav low cobble content CLAY. Gravel is fine to coarse rounded to sub-angular flint. (TOPSOIL)	sub-	-
							Firm orangish brown slightly sandy slightly gravel CLAY. Gravel is fine to coarse sub-angular to sub rounded flint, with rare sub-angular boulders up to diameter. (CLAY WITH FLINTS FORMATION)	-	0.5 -
				2.10 2.40			Structureless CHALK composed of firm creamy w very gravelly sandy SILT. Gravel clasts are sub-a very weak low density and white. (Grade Dm) (LEWES NODULAR & SEAFORD CHALK FORMATION) End of Pit at 2.400m		2.0
									3.0 -
									3.5
									4.0 -
									4.5
	xs: 1. No grou arisings. 4 /: Stable	undwater I. Equipm	encountered. 2 nent used: JCB (Infiltration 3CX.	n test ca	arried out	in pit. 3. On completion backfilled with	×	-

Geo Environn	mental Group					Tr	ial Pit Log	TrialPit IT02 Sheet 1	2
Project Name:	Land at Ch	eapside,	St Albans		ect No.		Co-ords: 515690.00 - 210010.00	Date	
					-24-821		Level: Dimensions 2.70	10/04/20 Scale	
			St Albans, AL3 6	BB			(m): 0	1:25	
Client:	HLM / PJA			1	1		Depth ci	Logge KT	<u> </u>
Water Strike	Samp Depth	les & In Situ Type	Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.00			Soft to firm dark brown slightly sandy slightly grav low cobble content CLAY. Gravel is fine to coarse rounded to sub-angular flint. (TOPSOIL)	sub-	
				0.30			Stiff orangish brown slightly sandy gravelly CLAY. is fine to coarse sub-angular to sub-rounded flint, frequent sub-angular boulders up to 20cm diamet (CLAY WITH FLINTS FORMATION)	with	0.5 -
									1.5
				2.00			End of Pit at 2.000m		2.0 -
									3.0 -
									3.5
									4.0 -
									4.5
	rs: 1. No grou arisings. 4 r: Stable	Indwater e	encountered. 2. ent used: JCB 3	Infiltration CX.	n test ca	arried out	in pit. 3. On completion backfilled with		-

Geo Environn	nental Group					Tr	ial Pit Log	TrialPit IT03 Sheet 1	3
Project Name:	Land at Ch	eapside	e, St Albans		ect No. -24-821		Co-ords: 515691.00 - 209994.00	Date 10/04/20	
Locatior	n: Land at Ch	eapside	e, St Albans, AL3	3 6BB			Dimensions 2.65 (m): 0 Depth 0	Scale 1:25	
Client:	HLM / PJA				1		Depth ci	Logge KT	d
Water Strike	Sampl Depth	les & In S Type	itu Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.00			MADE GROUND - Soft to firm dark brown slightly s slightly gravelly CLAY. Gravel is fine to coarse sub- rounded to sub-angular flint and occasional ceramic (REWORKED TOPSOIL) Stiff orangish brown slightly sandy gravelly CLAY. G is sub-angular to sub-rounded flint, with frequent su angular boulders up to 20cm diameter. (CLAY WITH FLINTS FORMATION)	c. Gravel	0.5
				1.00			Medium dense reddish and orangish brown clayey gravelly SAND. Gravel is sub-angular to sub-round flint, with frequent sub-angular boulders up to 20cm diameter. (CLAY WITH FLINTS FORMATION)	ed	1.0
							2.20m Becoming very gravelly		2.0 -
				2.75			End of Pit at 2.750m		3.0 -
									3.5
									4.0 -
									4.5
	s: 1. No grou arisings. 4 : Slightly un	. Equip	ment used: JCB	 2. Infiltratio 3CX.	n test ca	 arried out	in pit. 3. On completion backfilled with	ž	**

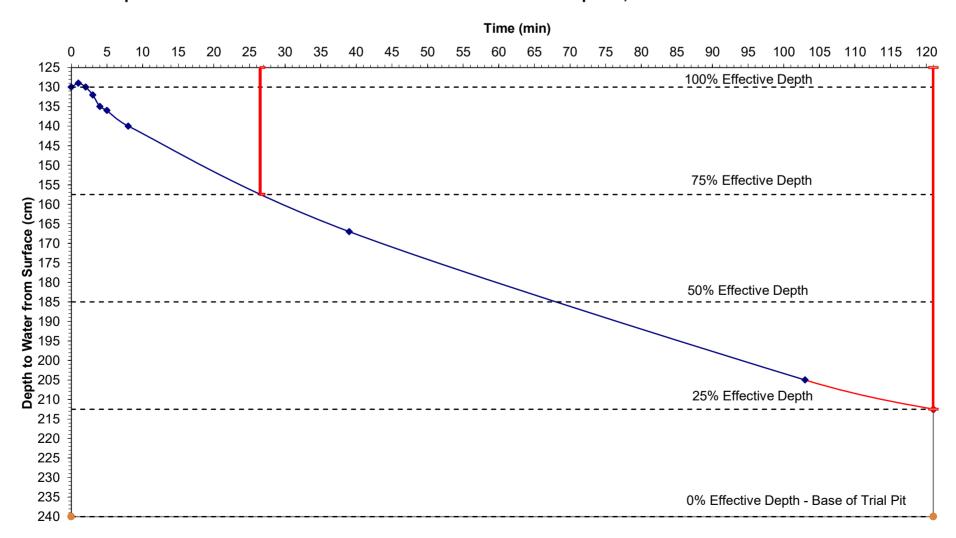
Geo Environm	nental Group					Tr	ial Pit Log	TrialPit IT0 4 Sheet 1	4
Project	Land at Ch	eapside.	St Albans		ct No.		Co-ords: 515672.00 - 209934.00	Date	•
Name:					-24-821		Level: Dimensions 2.80	04/07/20 Scale	
Location	: Land at Ch	eapside,	St Albans, AL3	6BB			(m):	1:25	
Client:	HLM / PJA			<u>.</u>			Depth o	Logge KT	ed
Water Strike	-	es & In Siti	u Testing	Depth	Level	Legend	Stratum Description		
≥ <u>t</u>	Depth	Туре	Results	(m) 0.00	(m)	<u></u>	Firm dark brown slightly sandy gravelly CLAY. C	Gravel is	
				0.25			fine to cobbles of angular to sub-rounded greyis yellowish flint. (TOPSOIL) Stiff reddish brown sandy very gravelly CLAY w boulder content. Gravel and boulders are sub-ro to angular greyish flint. (CLAY WITH FLINTS FORMATION)	sh 	0.5
				1.40			Structureless CHALK composed of firm slightly to gravelly clay. Clasts are sub-rounded to sub- flint and low to medium density chalk. (GRADE (LEWES NODULAR & SEAFORD CHALK FORMATION)	angular	1.5
				2.20			End of Pit at 2.200m		2.0
									2.5
									3.(
									3.5
									4.0
									4.5
Remarks	arisings. 4	. Equipm	encountered. 2. ient used: JCB 3 halk after 1.50m	BCX.	n test ca	arried out	in pit. 3. On completion backfilled with	×	5

Geo Environm	ental Group					Tr	ial Pit Log	TrialPit ITO: Sheet 1	5
Project	Land at Ch	eapside,	St Albans		ect No.		Co-ords: 515671.00 - 209920.00	Date	
Name:					-24-821		Level: Dimensions 2.80	04/07/20 Scale	
		eapside,	St Albans, AL3	6BB			(m):	1:25	
Client:	HLM / PJA			1	1		Depth o	Logge KT	u
Water Strike	Sampl Depth	es & In Situ	Results	Depth (m)	Level (m)	Legend	Stratum Description		
	Deptil	Туре	Results	0.00		14 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Firm dark brown slightly sandy gravelly CLAY. G	ravel is	
				2.40			fine to cobbles of angular to sub-rounded greyis yellowish flint. (TOPSOIL) Medium dense yellowish brown gravelly clayey: with low boulder content. Gravel and boulders a rounded to sub-angular to angular greyish flint a rare quartzite. (CLAY WITH FLINTS FORMATION) Becoming very clayey. 1.60-2.40m. Becoming very clayey. 1.60-2.40m. End of Pit at 2.400m	/ SAND re	0.5 - 1.0 - 1.5 - 2.0 - 3.0 - 3.5 - 4.0 - 4.5 -
	arisings. 4.	Equipme	encountered. 2. ent used: JCB 3 and repeatedly a	BCX.		arried out	in pit. 3. On completion backfilled with	ž	

Geo Environm	ental Group					Tr	ial Pit Log	TrialPit IT00 Sheet 1	6
Project	Land at Che	anside	St Albans	Proje	ect No.		Co-ords: 515689.00 - 209906.00	Date	
Name:		sapside,	Of Albans	GEG	-24-821		Level:	04/07/2	
Location	: Land at Che	eapside,	St Albans, AL3	6BB				Scale 1:25	
Client:	HLM / PJA						(m): 0; Depth 0; 2.80	Logge KT	ed
Water Strike		es & In Situ	•	Depth (m)	Level (m)	Legend	Stratum Description		
> 00 -	Depth	Туре	Results	0.00	(,		Firm dark brown slightly sandy gravelly CLAY. (Gravel is	
				0.25			fine to cobbles of angular to sub-rounded greyi yellowish flint. (TOPSOIL) Medium dense yellowish brown gravelly clayey with low boulder content. Gravel and boulders a rounded to sub-angular greyish flint and quartz (CLAY WITH FLINTS FORMATION)	sh SAND are	0.5
				1.20			Firm orangish sandy gravelly CLAY. Gravel is re sub-angular greyish flint and quartzite. (CLAY WITH FLINTS FORMATION)	ounded to	1.5
				2.40			Medium dense reddish orangish brown gravelly SAND with low cobble content. Gravel and cob sub-rounded yellowish flint and quartzite. (CLAY WITH FLINTS FORMATION)		2.5
				2.80			End of Pit at 2.800m		3.0
									3.5
									4.0
									4.5
Remarks	arisings. 4.	Equipm	encountered. 2 ent used: JCB and repeatedly	3CX.		arried out	in pit. 3. On completion backfilled with	×	3

	mental Group			Ducia	-4 81-		ial Pit Log	TrialPit IT07 Sheet 1	7 of 1
Project Name:	Land at Ch	eapside,	, St Albans		ect No. -24-821		Co-ords: 515629.00 - 209971.00 Level:	Date 04/07/20	
Locatior	n: Land at Ch	eapside.	, St Albans, AL3				Dimensions 2.70	Scale	;
Client:	HLM / PJA						(m): Depth c	1:25 Logge	
		les & In Sit	tu Testing	Depth	Level		2.50	KT	
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	Depth	Type	Results	2.10 2.50			Firm dark brown slightly sandy gravelly CLAY. Gr fine to cobbles of angular to sub-rounded greyist yellowish flint and greyish reddish sub-rounded of cobbles. (TOPSOIL) Stiff reddish brown sandy very gravelly CLAY wit boulder content. Gravel and boulders are sub-rou to angular greyish flint. (CLAY WITH FLINTS FORMATION) Structureless CHALK composed of firm slightly g to gravelly clay. Clasts are sub-rounded to sub-a fint and low to medium density chalk. (GRADE D (LEWES NODULAR & SEAFORD CHALK FORMATION) End of Pit at 2.500m	h juartzite h low unded ravelly ngular	0.5 1.0- 1.5 2.0- 3.0- 3.5 4.0-
									4.5
	s: 1. No grou arisings. 4 : Stable.	undwater . Equipm	encountered. 2 nent used: JCB	Infiltration 3CX.	n test ca	 arried out	in pit. 3. On completion backfilled with	×	

APPENDIX D

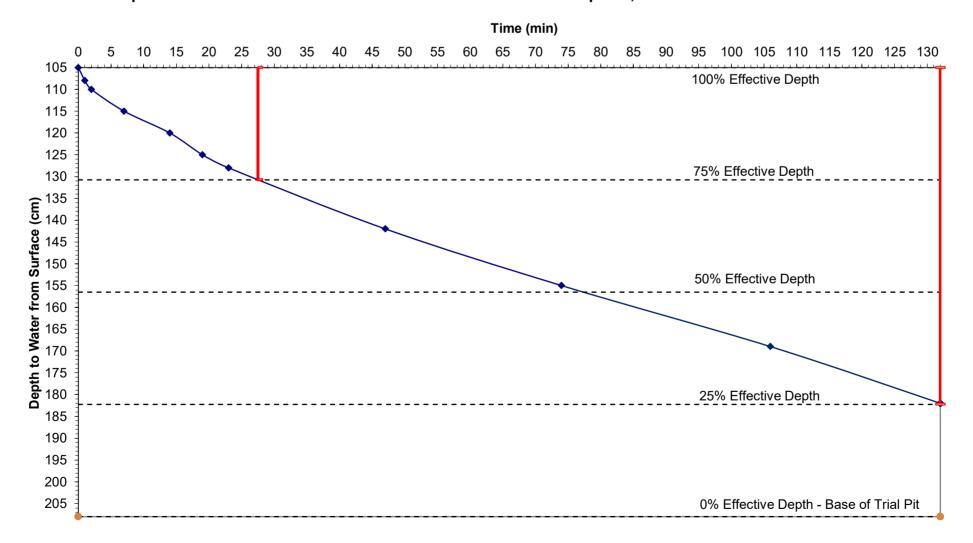

INFILTRATION TEST DATA

	Project Name:	Land at Cheapside	e, St. Albans		240	Geo Servir Environmental
	Project Ref.:	GEG-24-821		Depth of Water at start of test (cm):	130	Group
	Trial Pit:	IT01		Date of Test:	10 April 2024	
	Test No.:	Test 1 of 3		Site Engineer:	KT	
				Drafted by:	KT	
e (min)	Depth from Surface (cm)	% Effective Depth	<u>Notes</u> :			
-		100 001	(4) D (4)			

Time (min)	Depth from Surface (cm)	% Effective Depth	Notes:				
0	130	100.0%	[1] Base of trial pit collapsed to 2.08 m during the t	test; as such la	ast data point extrapolated.		
1	129	100.9%					
2	130	100.0%					
3	132	98.2%					
4	135	95.5%					
5	136	94.5%					
8	140	90.9%					
39	167	66.4%					
103	205	31.8%					
115	212.5	25.0%					
			Parameter	Symbol	Calculation	Units	IT01
			Effective Depth of Trial Pit	d _p		m	1.10
			Width of Trial Pit	w		m	0.60
			Length of Trial Pit	I		m	2.50
			Volume of Trial Pit	V	$= d_{p} \times w \times I$	m ³	1.65
			Volume of Trial Pit at 50% Effective Depth	$V_{50\%}$	= V x 0.5	m ³	0.825
			Internal Surface Area of Trial Pit*	a _{p50%}	$= I \times w + d_p \times (w + I)$	m²	4.91
			Time to reach 75% Effective Depth	T _{p75%}		min	26.50
			Time to reach 25% Effective Depth	T _{p25%}		min	121.00
					$= T_{p25\%} - T_{p75\%}$	<u> </u>	94.50
			Time 25% - 75%	p75%-25%	- / p25% - / p75%	min	94.00
			Time 25% - 75%	T _{p75%-25%}	— / _{p25%} - / _{p75%}	min	94.00
	End of Test		Infiltration Rate	۲ _{p75%-25%} f	$= V_{50\%} / a_{p50\%} \times (T_{p75\%-25\%})$	min m/s	2.96E-05

Graph F-1

GEG-24-821 Land at Cheapside, St. Albans IT01 Test 1 of 3



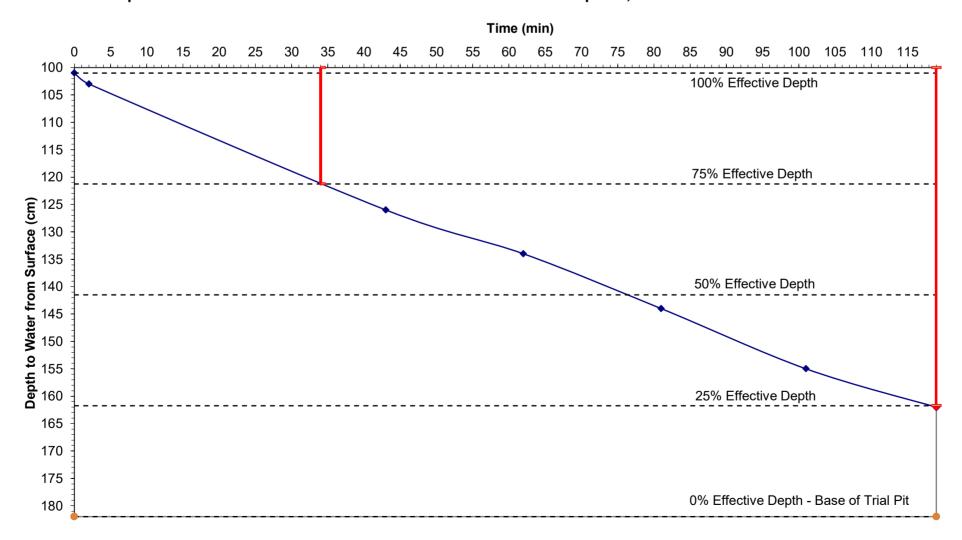
Checked by: MP

Image: constraint of the constr		Project Name:	Land at Cheapside	e, St. Albans Depth	of Pit (cm):	208	Geo	
Test No: Test 2 of 3 Site Engines: KT ima (min) Depth from Surface (cm) Notes: Notes: 1 1008 97.1% 1 1 1008 97.1% 1 1 1015 90.3% 1 14 120 85.4% 1 19 125 80.0% 1 23 128 77.7% 47 142 64.1% 132 1892 25.2% 132 1892 25.2% 132 1892 25.2% 132 192 1 143 1 1 15 169 37.9% 132 1892 25.2% 133 1892 25.2% 134 1 1 135 169 37.9% 136 1 1 137 1 1 138 1 1 139 1 1 130 1 1 131 1 1 132 1 1 133 1 1 144 1 1 155 151.5%		Project Ref.:	GEG-24-821	Depth of Water at start o	of test (cm):	105		
Drafted by: KT ime (min) Depth from Surface (cm) % Effective Depth 0 105 100.0% 1 108 97.1% 2 110 95.1% 7 1115 90.3% 14 120 85.4% 19 125 80.6% 23 128 77.7% 47 142 64.1% 74 155 51.5% 115 169 37.9% 132 182 25.2% 132 182 52.5% 132 182 51.5% 132 182 64.1% 7 117.5 100.0 132 182 52.2% 132 182 52.5% 132 182 52.5% 132 141 0 1 133 182.0 1 1 143 100.0 1 1 144 100.0		Trial Pit:	IT01	Da	ate of Test:	10 April 2024		
Imme (min) Depth from Surface (cm) % Effective Depth Notes: 0 105 100.0% 1 1 108 97.1% 2 110 95.1% 7 115 90.3% 14 120 85.4% 19 125 80.6% 23 128 77.7% 115 169 37.9% 115 169 37.9% 132 182 25.2% 1132 182 25.2% 110 111 10 111 10 1132 182 25.2% 1132 182 25.2% 1132 182 25.2% 1132 182 25.2% 114 10 10 10 1000 1000 111 1 1 1 10 1 1132 182 25.2% 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< th=""><th></th><th>Test No.:</th><th>Test 2 of 3</th><th>Site</th><th>e Engineer:</th><th>KT</th><th></th><th></th></t<>		Test No.:	Test 2 of 3	Site	e Engineer:	KT		
0 105 100.0% 1 108 97.1% 2 110 95.1% 7 115 90.3% 14 120 85.4% 19 125 80.6% 23 128 77.7% 47 1455 51.5% 115 169 37.9% 132 182 25.2% 115 169 37.9% 132 182 25.2% 115 169 37.9% 132 182 25.2% 115 169 37.9% 132 182 25.2% 132 182 25.2% 14 10 m 15 169 37.9% 16 10 10 17 115 10 1 18 14 1 1 1 19 100 1 1 1 100 11					Drafted by:	КТ		
1 108 97.1% 2 110 95.1% 7 115 90.3% 14 120 85.4% 19 125 80.6% 23 128 77.7% 47 142 64.1% 74 155 51.5% 115 169 37.9% 132 182 25.2% 132 182 25.2% 132 182 25.2% 133 182 25.2% 134 182 25.2% 135 169 37.9% 136 182 25.2% 137 182 25.2% 138 182 25.2% 139 182 25.2% 130 182 191 $\frac{m}{0.05}$ 131 182 100 100 100 132 182 25.5% 15.5% 15.5% 133 162 110 110 100 144 100 114 Pit 150% Effective Depth 1.55	ime (min)	Depth from Surface (cm)	% Effective Depth	Notes:				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	105	100.0%	[1] Base of pit at 2.08 m following slight collapse d	uring Test 1.			
7 115 90.3% 14 120 85.4% 19 125 80.6% 23 128 77.7% 47 142 64.1% 74 155 51.5% 115 169 37.9% 132 182 25.2% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td>1</td> <td>108</td> <td>97.1%</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1	108	97.1%					
14 120 85.4% 19 125 80.6% 23 128 77.7% 47 142 64.1% 74 155 51.5% 115 169 37.9% 132 182 25.2%	2	110	95.1%					
19 125 80.6% 23 128 77.7% 47 142 64.1% 74 155 51.5% 115 169 37.9% 132 182 25.2%	7	115	90.3%					
23 128 77.7% 47 142 64.1% 74 155 51.5% 115 169 37.9% 132 182 25.2%	14	120	85.4%					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	125	80.6%					
74 155 51.5% 115 169 37.9% 132 182 25.2% - - <td>23</td> <td>128</td> <td>77.7%</td> <td></td> <td></td> <td></td> <td></td> <td></td>	23	128	77.7%					
115 169 37.9% 132 182 25.2% 132 182 25.2% 132 182 25.2% 132 182 25.2% 133 182 25.2% 134 182 182 135 182 182 136 182 182 137 182 182 138 182 182 139 182 182 130 182 182 131 182 182 132 182 182 133 185 185 133 185 185 133 185 185 149 181 181 149 181 181 149 181 181 149 181 181 149 181 181 149 181 181 149 181 181 149 181 181 149 181 <td>47</td> <td>142</td> <td>64.1%</td> <td></td> <td></td> <td></td> <td></td> <td></td>	47	142	64.1%					
132 182 25.2% 132 182 25.2% 132 182 25.2% 132 182 25.2% 132 182 25.2% 132 182 25.2% 132 1 10 132 1 10.03 132 1 1 132 1 1 132 1 1.03 132 1 1.03 133 1.04 1.03 14 1 1.03 15 1 1.03 16 1 1.03 16 1 1.03 17 1 1.03 18 1.04 1.03 19 1 1.03 10 1.03 1.03 10 1.03 1.03 10 1.03 1.03 10 1.03 1.03 10 1.03 1.03 10 1.03 1.03 10 1.04 1.04	74	155	51.5%					
Image: constraint of the symbolCalculationUnitsIT01Image: constraint of the symbolImage: constraint of t	115	169	37.9%					
Image: constraint of the systemEffective Depth of Trial Pit d_p m1.03Image: constraint of the systemImage: constraint of the system <td>100</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	100	100						
Image: constraint of the systemEffective Depth of Trial Pit d_p m1.03Image: constraint of the systemImage: constraint of the system <th>132</th> <th>182</th> <th>25.2%</th> <th></th> <th></th> <th></th> <th></th> <th></th>	132	182	25.2%					
Image: constraint of the systemEffective Depth of Trial Pit d_p m1.03Image: constraint of the systemImage: constraint of the system <td>132</td> <td>182</td> <td>25.2%</td> <td></td> <td></td> <td></td> <td></td> <td></td>	132	182	25.2%					
Image: constraint of the systemEffective Depth of Trial Pit d_p m1.03Image: constraint of the systemImage: constraint of the system <th>132</th> <th>182</th> <th>25.2%</th> <th></th> <th></th> <th></th> <th></th> <th></th>	132	182	25.2%					
Image: constraint of the systemEffective Depth of Trial Pit d_p m1.03Image: constraint of the systemImage: constraint of the system <th>132</th> <th>182</th> <th>25.2%</th> <th></th> <th></th> <th></th> <th></th> <th></th>	132	182	25.2%					
Image: constraint of the systemEffective Depth of Trial Pit d_p m1.03Image: constraint of the systemImage: constraint of the system <th>132</th> <th></th> <th>25.2%</th> <th></th> <th></th> <th></th> <th></th> <th></th>	132		25.2%					
Image: constraint of the systemImage: constraint of the syst	132		25.2%					
Image: constraint of the systemWidth of Trial PitwIm0.60Image: constraint of the systemImage: constraint of the syste	132		25.2%	Parameter	Sumbol	Colculation		1701
Image: constraint of the systemImage: constraint of the syst	132		25.2%			Calculation		IT01
Image: Non-state index in	132		25.2%	Effective Depth of Trial Pit	d _p	Calculation	m	1.03
Image: Non-state index in the state index i	132		25.2%	Effective Depth of Trial Pit Width of Trial Pit	d _p	Calculation	m m	1.03 0.60
Internal Surface Area of Trial Pit* $a_{p50\%}$ $= I \times w + d_p \times (w + l)$ m^2 4.69Image: Surface Area of Trial Pit* $a_{p50\%}$ $= I \times w + d_p \times (w + l)$ m^2 4.69Image: Surface Area of Trial Pit* $T_{p75\%}$ $T_{p75\%}$ min 27.50Image: Surface Area of Trial Pit* $T_{p75\%}$ $T_{p25\%}$ min 132.0Image: Surface Area of Trial Pit* $T_{p75\%-25\%}$ $= T_{p25\%} - T_{p75\%}$ min 104.5Image: Surface Area of Trial Pit* $T_{p75\%-25\%}$ $= T_{p25\%} - T_{p75\%}$ min 104.5	132		25.2%	Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit	d _p w I		m m m	1.03 0.60 2.50
Image: constraint of the problemTime to reach 75% Effective Depth $T_{p75\%}$ min27.50Image: constraint of the problemTime to reach 25% Effective Depth $T_{p25\%}$ $T_{p25\%}$ min132.0Image: constraint of the problemTime 25% - 75% $T_{p75\%-25\%}$ $= T_{p25\%} - T_{p75\%}$ min104.5	132		25.2%	Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit	d _p w I V	= d _p x w x l	m m m m ³	1.03 0.60 2.50 1.55
Image: mine to reach 25% Effective Depth $T_{p25\%}$ $T_{p25\%}$ mine 132.0 Image: mine to reach 25% Effective Depth $T_{p75\%-25\%}$ $= T_{p25\%} - T_{p75\%}$ mine 132.0 Image: mine to reach 25% effective Depth $T_{p75\%-25\%}$ $= T_{p25\%} - T_{p75\%}$ mine 132.0	132		25.2%	Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth	d _p w I V V _{50%}	= d _p x w x l = V x 0.5	m m m ³ m ³	1.03 0.60 2.50 1.55 0.7725
Time 25% - 75% $T_{p75\%-25\%}$ $= T_{p25\%} - T_{p75\%}$ min 104.5				Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit*	d _p w I V V _{50%} a _{p50%}	= d _p x w x l = V x 0.5	m m m ³ m ³ m ²	1.03 0.60 2.50 1.55 0.7729 4.69
	132			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit* Time to reach 75% Effective Depth	d _p w I V V _{50%} a _{p50%} T _{p75%}	= d _p x w x l = V x 0.5	m m m m ³ m ³ m ² min	1.03 0.60 2.50 1.55 0.7729 4.69 27.50
End of Test				Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit* Time to reach 75% Effective Depth Time to reach 25% Effective Depth	d _p w I V V _{50%} a _{p50%} T _{p75%} T _{p25%}	$= d_{p} x w x l$ = V x 0.5 = l x w + d_{p} x (w + l)	m m m ³ m ³ m ² min min	1.03 0.60 2.50 1.55 0.7725 4.69 27.50 132.00
				Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit* Time to reach 75% Effective Depth Time to reach 25% Effective Depth	d _p w I V V _{50%} a _{p50%} T _{p75%} T _{p25%}	$= d_{p} x w x l$ = V x 0.5 = l x w + d_{p} x (w + l)	m m m ³ m ³ m ² min min	1.03 0.60 2.50 1.55 0.772 4.69 27.50

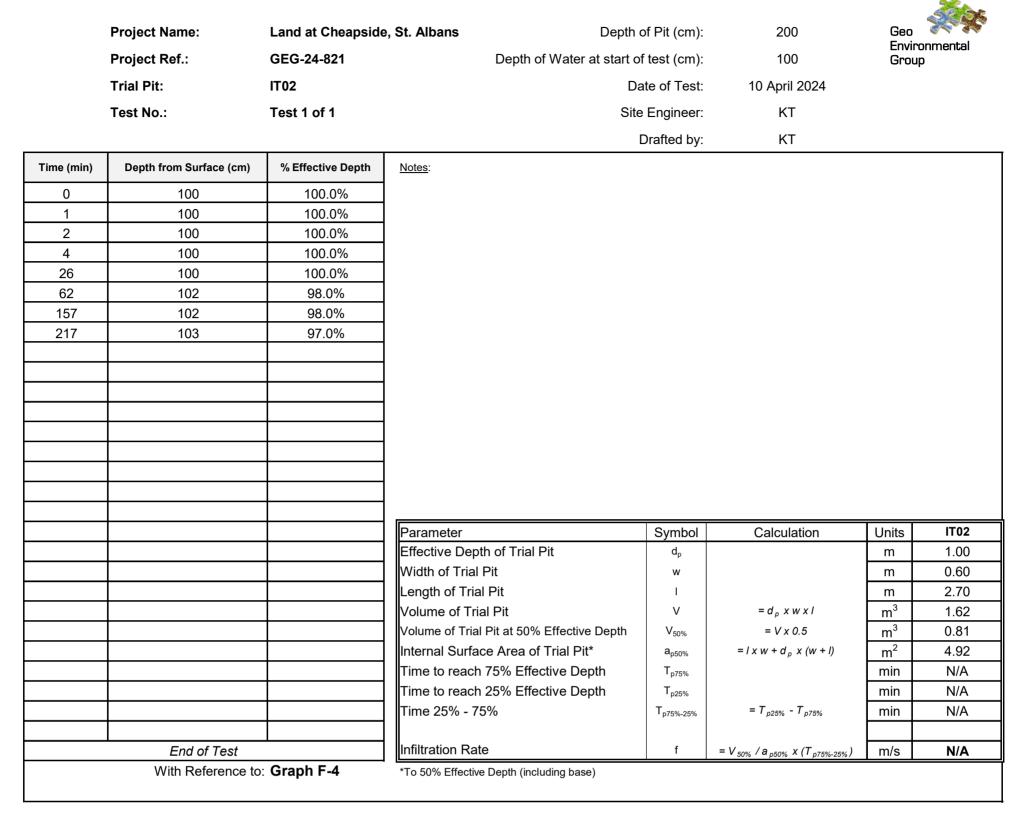
Graph F-2

GEG-24-821 Land at Cheapside, St. Albans IT01 Test 2 of 3

Checked by: MP

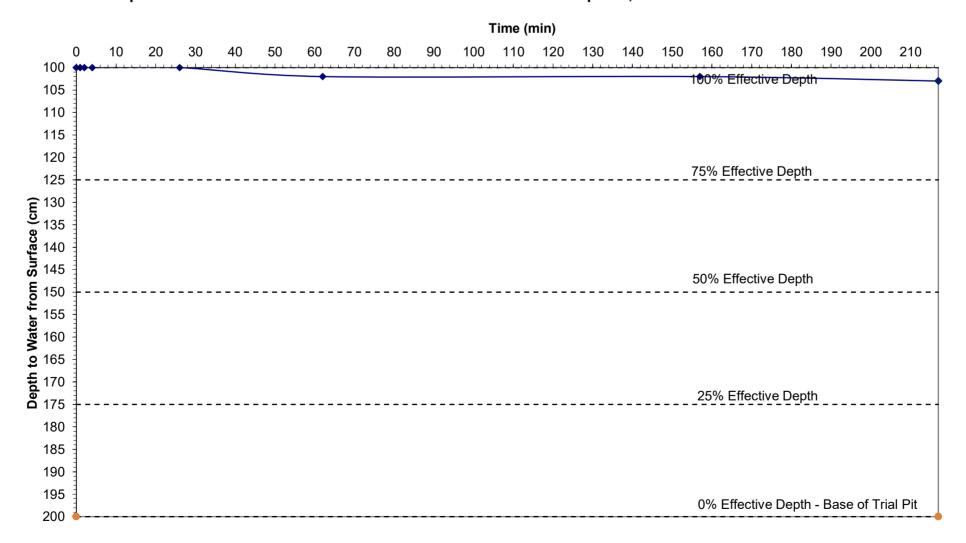

	Project Name:	Land at Cheapside	e, St. Albans Depth of Pit (cm):	182	Geo 😿 😽 Environmental
	Project Ref.:	GEG-24-821	Depth of Water at start of test (cm):	101	Group
	Trial Pit:	IT01	Date of Test:	10 April 2024	
	Test No.:	Test 3 of 3	Site Engineer:	KT	
			Drafted by:	KT	
Time (min)	Depth from Surface (cm)	% Effective Depth	Notes:		
0	101	100.0%	[1] Base of pit at 1.82 m following slight collapse during Test 2.		
2	103	97.5%	[2] Base of trial pit collapsed to 1.62 m during the test; as such las	t data point extrapolated.	
43	126	69.1%			
62	134	59.3%			
81	144	46.9%			
101	155	33.3%			
119	162	24.7%			

<u> Seise</u>


	Parameter	Symbol	Calculation	Units	IT01
	Effective Depth of Trial Pit	d _p		m	0.81
	Width of Trial Pit	w		m	0.60
	Length of Trial Pit	I		m	2.50
	Volume of Trial Pit	V	$= d_p \times w \times l$	m ³	1.22
	Volume of Trial Pit at 50% Effective Depth	$V_{50\%}$	$= V \times 0.5$	m ³	0.6075
	Internal Surface Area of Trial Pit*	a _{p50%}	$= I \times w + d_p \times (w + I)$	m ²	4.01
	Time to reach 75% Effective Depth	T _{p75%}		min	34.00
	Time to reach 25% Effective Depth	$T_{p25\%}$		min	119.00
	Time 25% - 75%	T _{p75%-25%}	$= T_{p25\%} - T_{p75\%}$	min	85.00
End of Test	Infiltration Rate	f	$= V_{50\%} / a_{p50\%} \times (T_{p75\%-25\%})$	m/s	2.97E-05
With Reference to: Graph F-3	*To 50% Effective Depth (including base)	-		<u> </u>	

Graph F-3

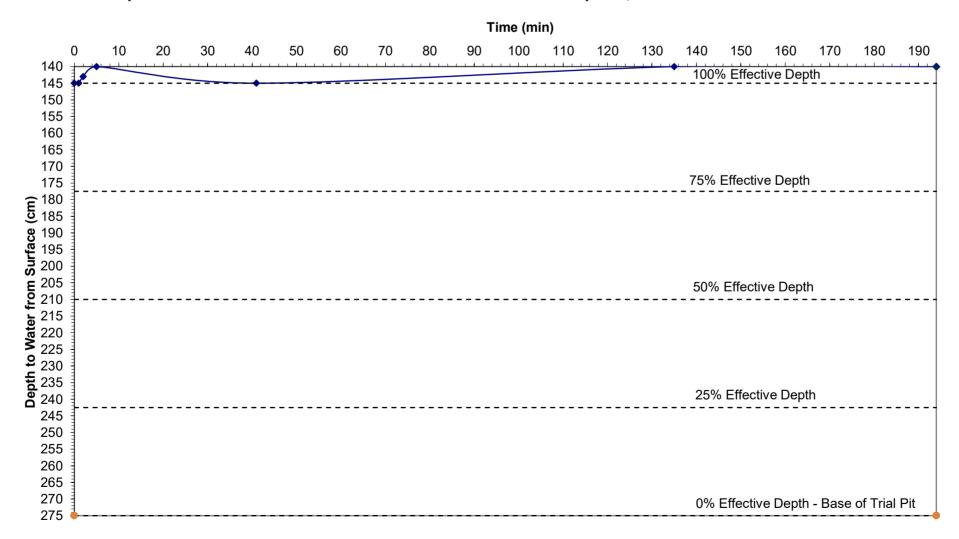
GEG-24-821 Land at Cheapside, St. Albans IT01 Test 3 of 3



Checked by: MP

Graph F-4

GEG-24-821 Land at Cheapside, St. Albans IT02 Test 1 of 1

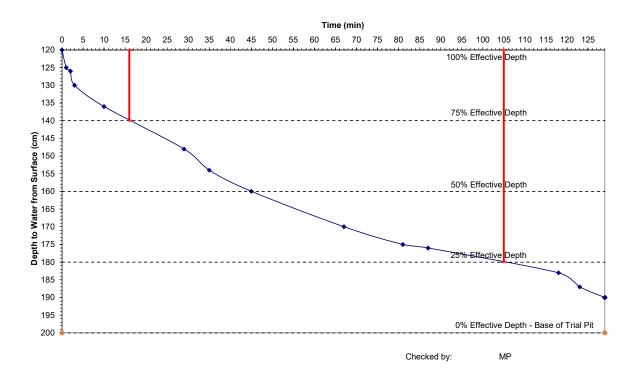


Checked by: MP

	Project Name:	Land at Cheapside	e, St. Albans Dep	th of Pit (cm):	275	Geo	<u> </u>
	Project Ref.:	GEG-24-821	Depth of Water at star	t of test (cm):	145	Grou	onmental p
	Trial Pit:	IT03		Date of Test:	10 April 2024		
	Test No.:	Test 1 of 1	S	Site Engineer:	KT		
				Drafted by:	KT		
Time (min)	Depth from Surface (cm)	% Effective Depth	Notes:				
0	145	100.0%	[1] Groundwater level rose during test potentiall	y due to instabilit	y of the trial pit sides.		
1	145	100.0%					
2	143	101.5%					
5	140	103.8%					
41	145	100.0%					
135	140	103.8%					
194	140	103.8%					
			Parameter	Symbol	Calculation	Units	IT03
			Effective Depth of Trial Pit	dp		m	1.30
			Width of Trial Pit	w		m	0.60
			Length of Trial Pit	I		m	2.65
			Volume of Trial Pit	V	$= d_p x w x I$	m ³	2.07
			Volume of Trial Pit at 50% Effective Depth	N V _{50%}	= V x 0.5	m ³	1.0335
			Internal Surface Area of Trial Pit*	a _{p50%}	$= l \times w + d_p \times (w + l)$	m ²	5.82
			Time to reach 75% Effective Depth	$T_{p75\%}$		min	N/A
			Time to reach 25% Effective Depth	T _{p25%}		min	N/A
			Time 25% - 75%	T _{p75%-25%}	$= T_{p25\%} - T_{p75\%}$	min	N/A
						1 1	
	End of Test		Infiltration Rate	f	$= V_{50\%} / a_{p50\%} \times (T_{p75\%-25\%})$	m/s	N/A

Graph F-5

GEG-24-821 Land at Cheapside, St. Albans IT03 Test 1 of 1

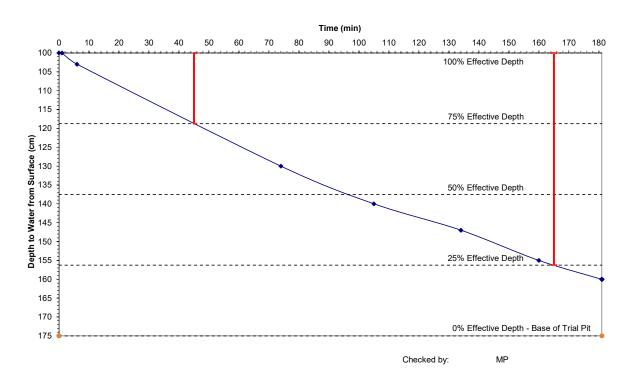


Checked by: MP

	Project Name:	Land at Cheapsid	e, St. Albans Depi	th of Pit (cm):	200	Geo	24.3
	Project Ref.: GEG-24-821		Depth of Water at star	120	Environmental Group		
	Trial Pit:	IT04		Date of Test:	04 July 2024		
	Test No.:	Test 1 of 2	S	Site Engineer:	КТ		
				Drafted by:	EW		
me (min)	Depth from Surface (cm)	% Effective Depth	Notes:				
0	120	100.0%					
1	125	93.8%					
2	126	92.5%					
3	130	87.5%					
10	136	80.0%					
29	148	65.0%					
35	154	57.5%					
45	160	50.0%					
67	170	37.5%					
81	175	31.3%					
87	176	30.0%					
118	183	21.3%					
123	187	16.3%					
129	190	12.5%					
			Parameter	Symbol	Calculation	Units	IT04
			Effective Depth of Trial Pit	d _p	Galodiation	m	0.80
			Width of Trial Pit	w		m	0.50
			Length of Trial Pit	1		m	2.80
			Volume of Trial Pit	v	$= d_p x w x l$	m ³	1.12
			Volume of Trial Pit at 50% Effective Depth	V _{50%}	= V x 0.5	m ³	0.56
			Internal Surface Area of Trial Pit*	a _{p50%}	$= l x w + d_p x (w + l)$	m ²	4.04
			Time to reach 75% Effective Depth	T _{p75%}		min	16.00
						and in	105.0
			Time to reach 25% Effective Depth	T _{p25%}		min	100.0
			Time to reach 25% Effective Depth Time 25% - 75%	T _{p75%-25%}	$= T_{p25\%} - T_{p75\%}$	min min	89.00

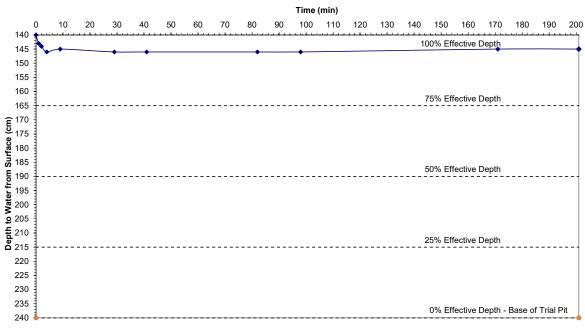
Graph F-6

GEG-24-821 Land at Cheapside, St. Albans IT04 Test 1 of 2


GEG	Infiltration	Test	Sheet
-----	--------------	------	-------

	Project Name:	Land at Cheapside	e, St. Albans Depth	of Pit (cm):	175	Geo	<u> </u>
	Project Ref.:	GEG-24-821	Depth of Water at start of	of test (cm):	100	Grou	onmental Ip
	Trial Pit:	IT04	C	ate of Test:	04 July 2024		
	Test No.:	Test 2 of 2	Sit	e Engineer:	КТ		
				Drafted by:	EW		
Time (min)	Depth from Surface (cm)	% Effective Depth	Notes:	,			
0	100	100.0%	[1] Base of pit at 1.75 m following slight colla	ose durina Te	st 1		
1	100	100.0%		soc during re			
6	103	96.0%					
74	130	60.0%					
105	140	46.7%					
134	147	37.3%					
160	155	26.7%					
181	160	20.0%					
			Parameter	Symbol	Calculation	Units	IT04
			Effective Depth of Trial Pit	dp		m	0.75
			Width of Trial Pit	w		m	0.50
			Length of Trial Pit	1		m	2.80
			Volume of Trial Pit	V	$= d_p \times w \times l$	m ³	1.05
			Volume of Trial Pit at 50% Effective Depth	V _{50%}	= V x 0.5	m ³	0.525
			Internal Surface Area of Trial Pit*	a _{p50%}	$= l x w + d_p x (w + l)$	m ²	3.88
			Time to reach 75% Effective Depth	T _{p75%}		min	45.00
			Time to reach 25% Effective Depth	T _{p25%}		min	165.00
			Time 25% - 75%	T _{p75%-25%}	$= T_{p25\%} - T_{p75\%}$	min	120.00
	End of Test		Infiltration Rate	f	$= V_{50\%} / a_{p50\%} \times (T_{p75\%-25\%})$	m/s	1.88E-05
	With Reference to	Graph F-7	*To 50% Effective Depth (including base)		50% · - pou% · · · p/o%-25%/		

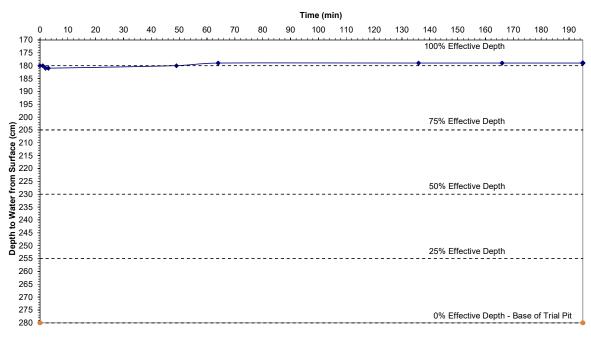
Graph F-7


GEG-24-821 Land at Cheapside, St. Albans IT04 Test 2 of 2

	Project Name:	Land at Cheapside	e, St. Albans Depth	of Pit (cm):	240	Geo	20.3	
	Project Ref.:	GEG-24-821	Depth of Water at start	Depth of Water at start of test (cm):		Environmental Group		
	Trial Pit:	IT05	C	ate of Test:	04 July 2024			
	Test No.:	Test 1 of 1	Si	te Engineer:	КТ			
				Drafted by:	EW			
me (min)	Depth from Surface (cm)	% Effective Depth	Notes:					
0	140	100.0%						
1	143	97.0%						
2	144	96.0%						
4	146	94.0%						
9	145	95.0%						
29	146	94.0%						
41	146	94.0%						
82	146	94.0%						
98	146	94.0%						
171	145	95.0%						
201	145	95.0%						
			-					
			Parameter	Symbol	Calculation	Unite	1705	
			Parameter Effective Depth of Trial Pit	Symbol	Calculation	Units		
			Effective Depth of Trial Pit	d _p	Calculation	m	IT05 1.00 0.50	
			Effective Depth of Trial Pit Width of Trial Pit	d _p w	Calculation	m m	1.00 0.50	
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit	d _p		m m m	1.00 0.50 2.80	
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit	d _p w I V	= d _p x w x l	m m m m ³	1.00 0.50 2.80 1.40	
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth	d _p w I V V _{50%}	= d _p x w x l = V x 0.5	m m m ³ m ³	1.00 0.50 2.80 1.40 0.7	
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit*	d _p w I V V _{50%} a _{p50%}	= d _p x w x l	m m m ³ m ³ m ²	1.00 0.50 2.80 1.40 0.7 4.70	
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit* Time to reach 75% Effective Depth	d _p w I V V _{50%} a _{p50%} T _{p75%}	= d _p x w x l = V x 0.5	m m m ³ m ³	1.00 0.50 2.80 1.40 0.7	
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit*	d _p w I V V _{50%} a _{p50%}	= d _p x w x l = V x 0.5	m m m ³ m ³ m ² min	1.00 0.50 2.80 1.40 0.7 4.70 N/A	

Graph F-8

GEG-24-821 Land at Cheapside, St. Albans IT05 Test 1 of 1

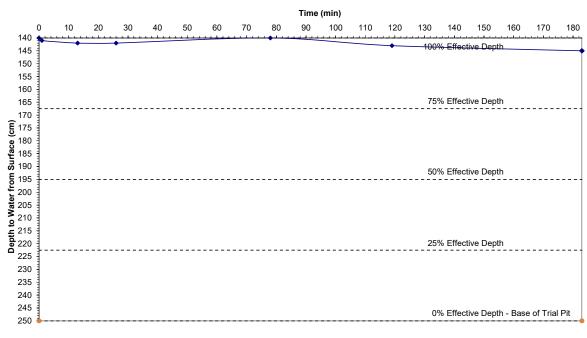


Checked by: MP

	Project Name:	Land at Cheapsid	e, St. Albans Depth	of Pit (cm):	280	Geo	nmenta
	Project Ref.:	GEG-24-821	Depth of Water at start o	Depth of Water at start of test (cm): Date of Test:		Group	
	Trial Pit:	IT06	Di				
	Test No.:	Test 1 of 1	Site	e Engineer:	KT		
				Drafted by:			
me (min)	Depth from Surface (cm)	% Effective Depth	Notes:				
0	180	100.0%					
1	180	100.0%					
2	181	99.0%					
3	181	99.0%					
49	180	100.0%					
64	179	101.0%					
136	179	101.0%					
166	179	101.0%					
195	179	101.0%					
			Parameter	Symbol	Calculation	Units	ITO
			Effective Depth of Trial Pit	Symbol	Calculation	Units m	1.00
			Effective Depth of Trial Pit Width of Trial Pit		Calculation	-	1.00 0.50
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit	d _p w I		m m m	1.00 0.50 2.60
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit	d _p w	Calculation	m m m m ³	1.00 0.50 2.60 1.30
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit	d _p w I	= d _p x w x l = V x 0.5	m m m ³ m ³	1.00 0.50 2.60 1.30 0.65
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit	d _p w I V	= d _p x w x l	m m m m ³	1.00 0.50 2.60 1.30 0.69 4.40
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit* Time to reach 75% Effective Depth	d _p w I V V _{50%}	= d _p x w x l = V x 0.5	m m m ³ m ³	1.00 0.50 2.60 1.30 0.65 4.40 N/A
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit*	d _p w I V V _{50%} a _{p50%}	= d _p x w x l = V x 0.5	m m m ³ m ³ m ²	1.00 0.50 2.60 1.30 0.69 4.40
			Effective Depth of Trial Pit Width of Trial Pit Length of Trial Pit Volume of Trial Pit Volume of Trial Pit at 50% Effective Depth Internal Surface Area of Trial Pit* Time to reach 75% Effective Depth	d _p w I V V _{50%} a _{p50%} T _{p75%}	= d _p x w x l = V x 0.5	m m m ³ m ³ m ² min	1.00 0.50 2.60 1.30 0.65 4.40 N/A

Graph F-9

GEG-24-821 Land at Cheapside, St. Albans IT06 Test 1 of 1



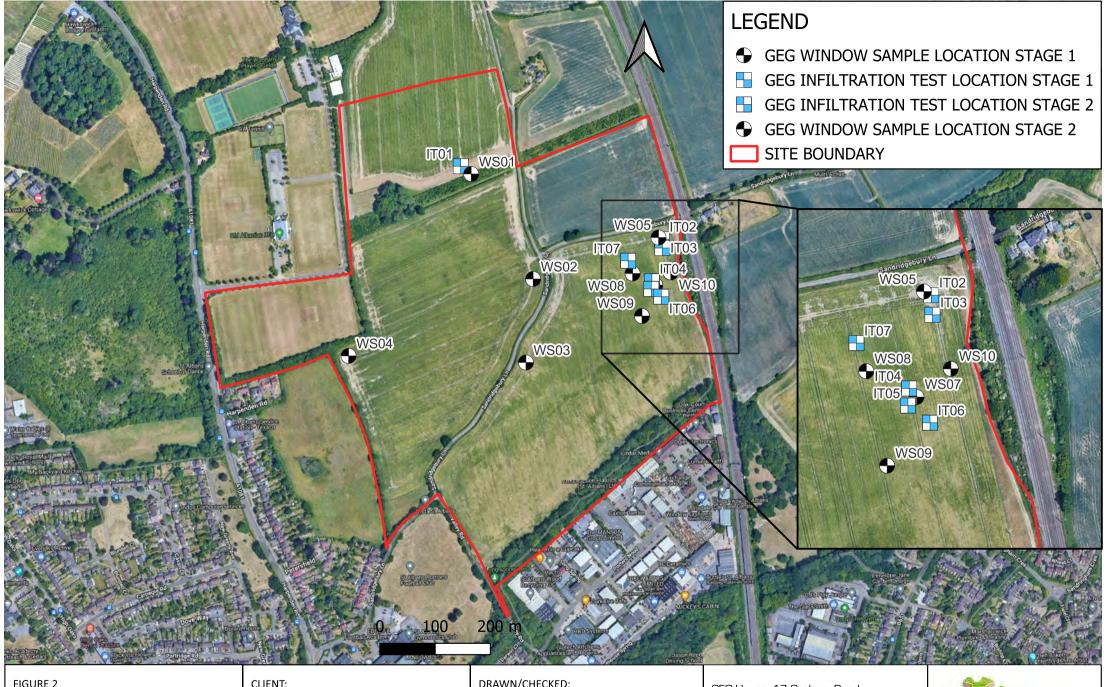
Checked by: MP

	Project Name:	Land at Cheapsid	e, St. Albans Dep	th of Pit (cm):	250	Geo	200
	Project Ref.:	GEG-24-821	Depth of Water at star	Depth of Water at start of test (cm):		Grou	onmental Ip
	Trial Pit:	IT07		Date of Test:	04 July 2024		
	Test No.:	Test 1 of 1	:	Site Engineer:	KT		
				Drafted by:			
me (min)	Depth from Surface (cm)	% Effective Depth	Notes:				
0	140	100.0%					
1	141	99.1%					
13	142	98.2%					
26	142	98.2%					
78	140	100.0%					
119	143	97.3%					
183	145	95.5%					
			- - - -				
			Parameter	Symbol	Calculation	Units	IT07
			Effective Depth of Trial Pit	d _p		m	1.10
			Width of Trial Pit	w		m	0.50
			Length of Trial Pit			m	2.70
			Volume of Trial Pit	V	$= d_p \times w \times I$	m ³	1.49
		1	Volume of Trial Pit at 50% Effective Depth		= V x 0.5	m ³	0.742
					$= l x w + d_p x (w + l)$	m ²	4.87
			Internal Surface Area of Trial Pit*	a _{p50%}			
			Time to reach 75% Effective Depth	T _{p75%}		min	N/A
			Time to reach 75% Effective Depth Time to reach 25% Effective Depth	T _{p75%} T _{p25%}	- T T	min min	N/A
			Time to reach 75% Effective Depth	T _{p75%}	$= T_{p25\%} - T_{p75\%}$	min	N/A N/A N/A

Graph F-10

GEG-24-821 Land at Cheapside, St. Albans IT07 Test 1 of 1

Checked by: MP


APPENDIX E

FALLING HEAD TESTS

Fall		ge Test Calculatio 24-821	ns -		310s
WS06 (Test 1 of 1)					50.50
		5.00			
Time (sec)	Time (min)	Depth from Surface (m)	Нр	1.50	
0	0	3.87	1.13		Notes:
15 30	0.3	4.16 4.37	0.84 0.63		Annualizately 75 litera effected and a second into the standard
30 45	0.5 0.8	4.37 4.57	0.63		Approximately 75 litres of water was poured into the standpipe (at a rapid rate) in order to conduct the test at the depth indicate
120	2.0	4.85	0.15		
150	2.5	4.87	0.13	\mathbf{N}	
180	3.0	4.93	0.07	1.00	
210 220	3.5 3.7	4.96 4.97	0.04 0.03		
220	3.8	4.97	0.03	E .	
240	4.0	5.00	0.00	Head (m)	
					WS06 (Test 1 of 1)
				0.50	With Reference to Kent County Council -
					The Soakaway Design Guide, 2000
					d Diameter of borehole 0.10 m
					D Diameter of base of borehole 0.10 m
					L Length of response zone 2.10 m
					Hp y intercept of tangent 0.60 m t _h x intercept of tangent 2.70 min
				0 1 2 3 4 5	t _h <i>x intercept of tangent</i> 2.70 min
	1			Time (min)	
Date of Test:	09/05/2024				Soakage = 250 Hp d ² /D L t _h $2.65E+00$ I/m ² /min
	End of Test		KT/MP		

Falli		ge Test Calculatio 24-821	ns -		
	NS06 (Test 2 of	2)	11/06/2024		20. 20
Depth of borehole (m): 5.00			5.00		
Time (sec)	Time (min)	Depth from Surface (m)	Нр	1.50	
0	0	3.90	1.10	-	Notes:
15	0.3	4.40	0.60		
30	0.5	4.70	0.30		Approximately 75 litres of water was poured into the standpipe
45	0.8	4.80	0.20		(at a rapid rate) in order to conduct the test at the depth indicated
60 75	1.0 1.3	4.85 4.90	0.15 0.10	•	
90	1.5	4.95	0.10	1.00 -	
120	2.0	5.00	0.00		
150	2.5	5.10	-0.10		
160	2.7	5.12	-0.12	ε	
				Head (m)	WS06 (Test 2 of 2)
				0.50	With Reference to Kent County Council - The Soakaway Design Guide, 2000
					dDiameter of borehole0.10mDDiameter of base of borehole0.10mLLength of response zone2.10mHpy intercept of tangent0.60m45thx intercept of tangent1.75
Date of Test:	09/05/2024			Time (min)	Soakage = 250 Hp d ² /D L t _h 4.08E+00 l/m ² /min
	End of Test		KT/MP		

www.g-eg.co.uk

FIGURE 2 EXPLORATORY HOLE LOCATION PLAN	CLIENT: HALLAM LAND MANA	GMENT / PJA	DRAWN/CHECKED: EW / MP		GEG House, 17 Graham Road Malvern, WR14 2HR Tel. 01684 212516
SITE:	PROJECT NUMBER:	SCALE:	DATE:	REVISION:	Fax. 01684 576917
LAND AT CHEAPSIDE, ST ALBANS	GEG-24-821	AS SHOWN	30/07/24	2	admin@g-eg.co.uk, www.g-eg.co.uk

Appendix C Thames Water Asset Mapping

Asset location search

PJA Engineering LONGBRIDGE B31 2UQ

Search address supplied

O A Sports Old Albanian Sports Club 160 Harpenden Road St. Albans AL3 6BB

Your	reference	
------	-----------	--

05920 - St Albans

Our reference

ALS/ALS Standard/2023_4892519

Search date

10 October 2023

Notification of Price Changes

From 1st April 2023 Thames water Property Searches will be increasing the prices of its CON29DW, CommercialDW Drainage & Water Enquiries and Asset Location Searches. Historically costs would rise in line with RPI but as this currently sits at 14.2%, we are capping it at 10%.

Customers will be emailed with the new prices by January 1st 2023.

Any orders received with a higher payment prior to the 1st April 2023 will be non-refundable. For further details on the price increase please visit our website at <u>www.thameswater-propertysearches.co.uk</u>

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: O A Sports, Old Albanian Sports Club, 160, Harpenden Road, St. Albans, AL3 6BB

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Following examination of our statutory maps, Thames Water has been unable to find any record of public sewerage within this area. However, there may be other sewerage pipework within the area that is not owned by the company. You may be able to obtain records of such pipework from the building control department of your local authority, from property deeds or from neighbouring landowners.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Following examination of our statutory maps, Thames Water has been unable to find any plans of water mains within this area. If you require a connection to the public water supply system, please write to:

> New Connections / Diversions Thames Water Network Services Business Centre Brentford Middlesex TW8 0EE

Tel: 0845 850 2777 Fax: 0207 713 3858 Email: developer.services@thameswater.co.uk

For your guidance:

 Assets other than vested water mains may be shown on the plan, for information only.

• If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

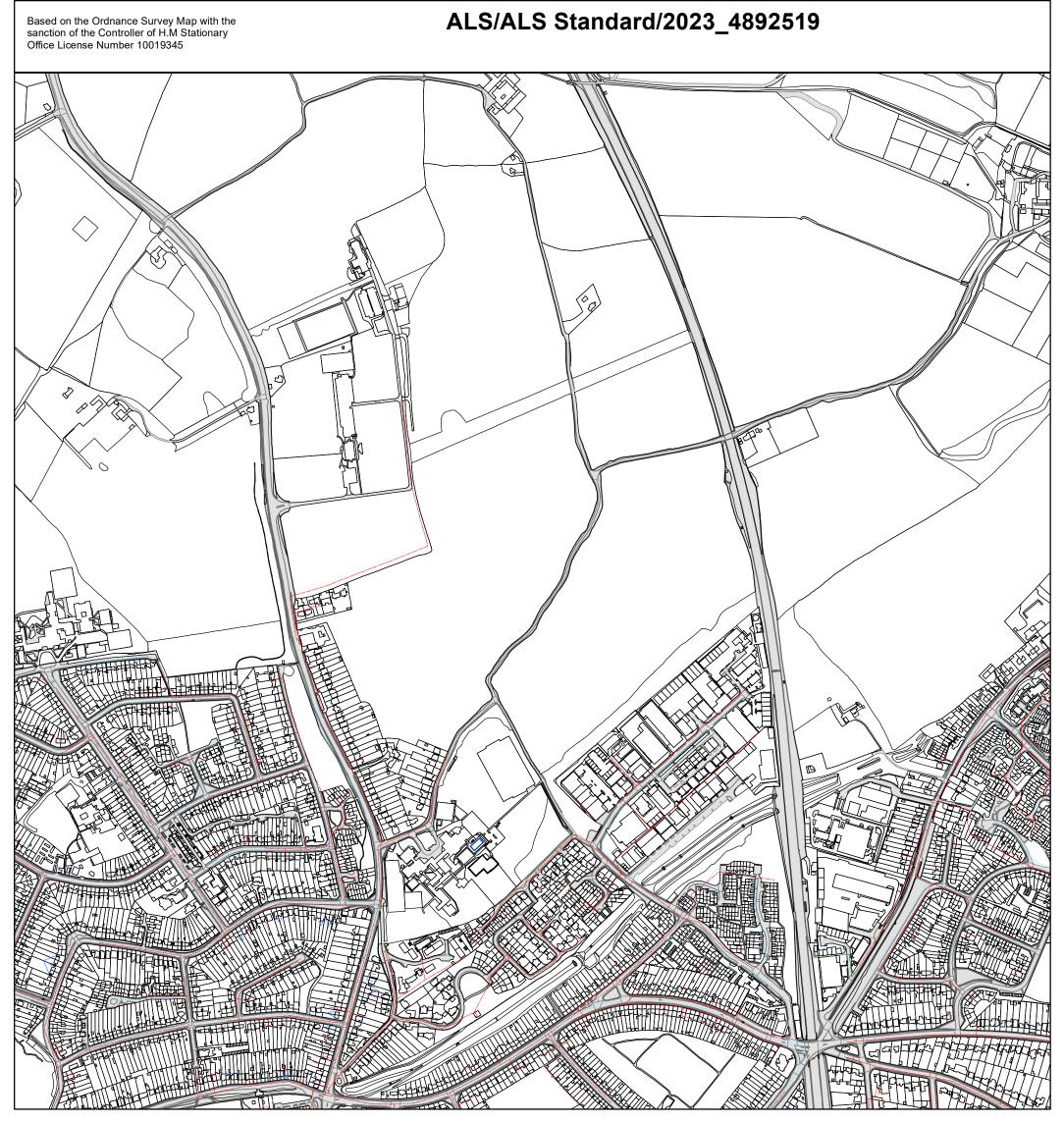
Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB


Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

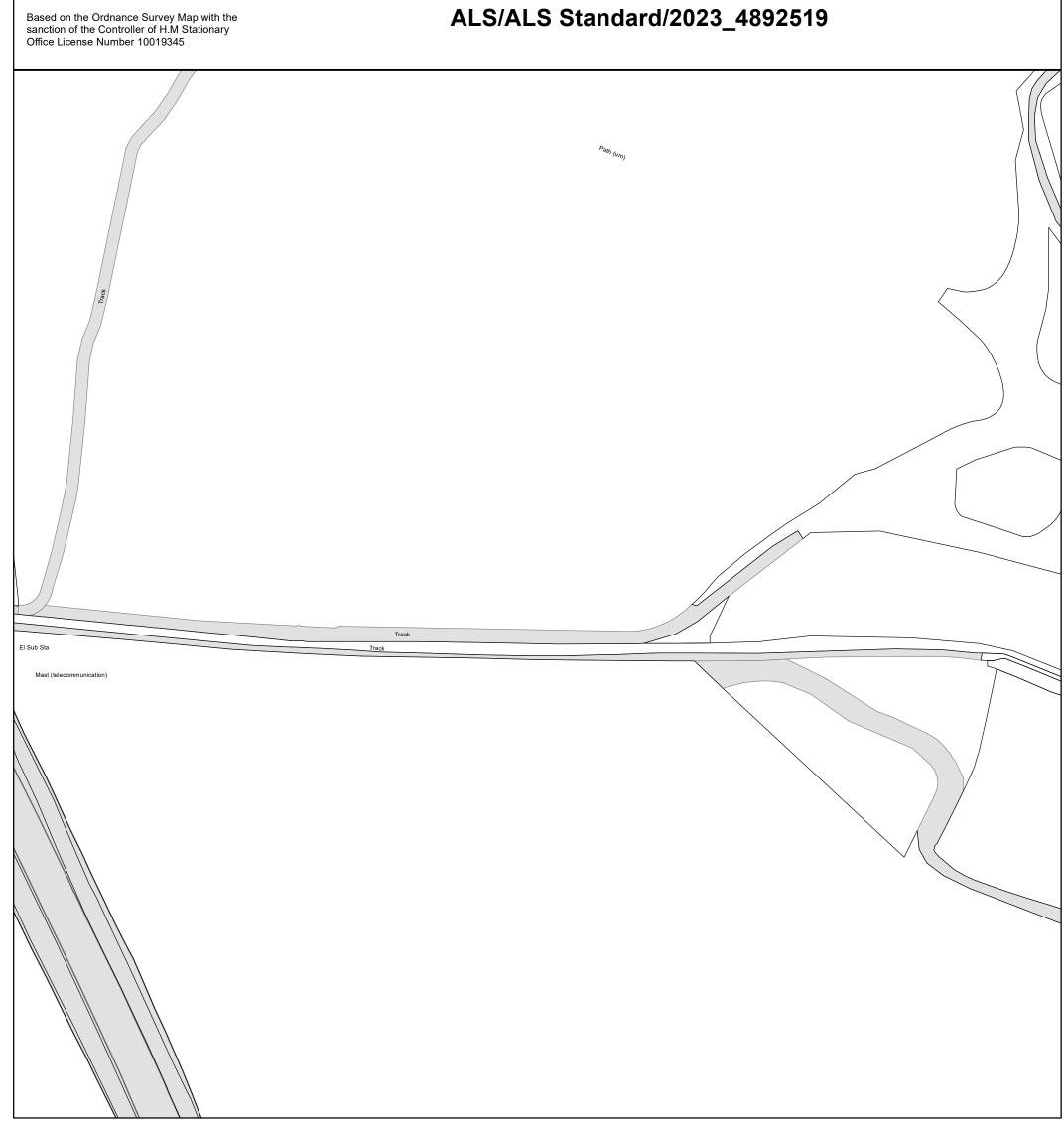
Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

0 45 90 180 270 360


Width:200mPrinted By:ASujiPrint Date:10/10/203Map Centre:515353,209754Grid Reference:TL1509NW	Scale:	1:7160	Comments:
Print Date: 10/10/2023 Map Centre: 515353,209754	Width:	2000m	
Map Centre: 515353,209754	Printed By:	ASuji	
	Print Date:	10/10/2023	
Grid Reference: TL1509NW	Map Centre:	515353,209754	
	Grid Reference:	TL1509NW	

Scale:	1:1789	Com
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515250,210750	
Grid Reference:	TL1510NW	

ALS/ALS	ALS/ALS Standard/2023_4892519							
NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.								
REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL			

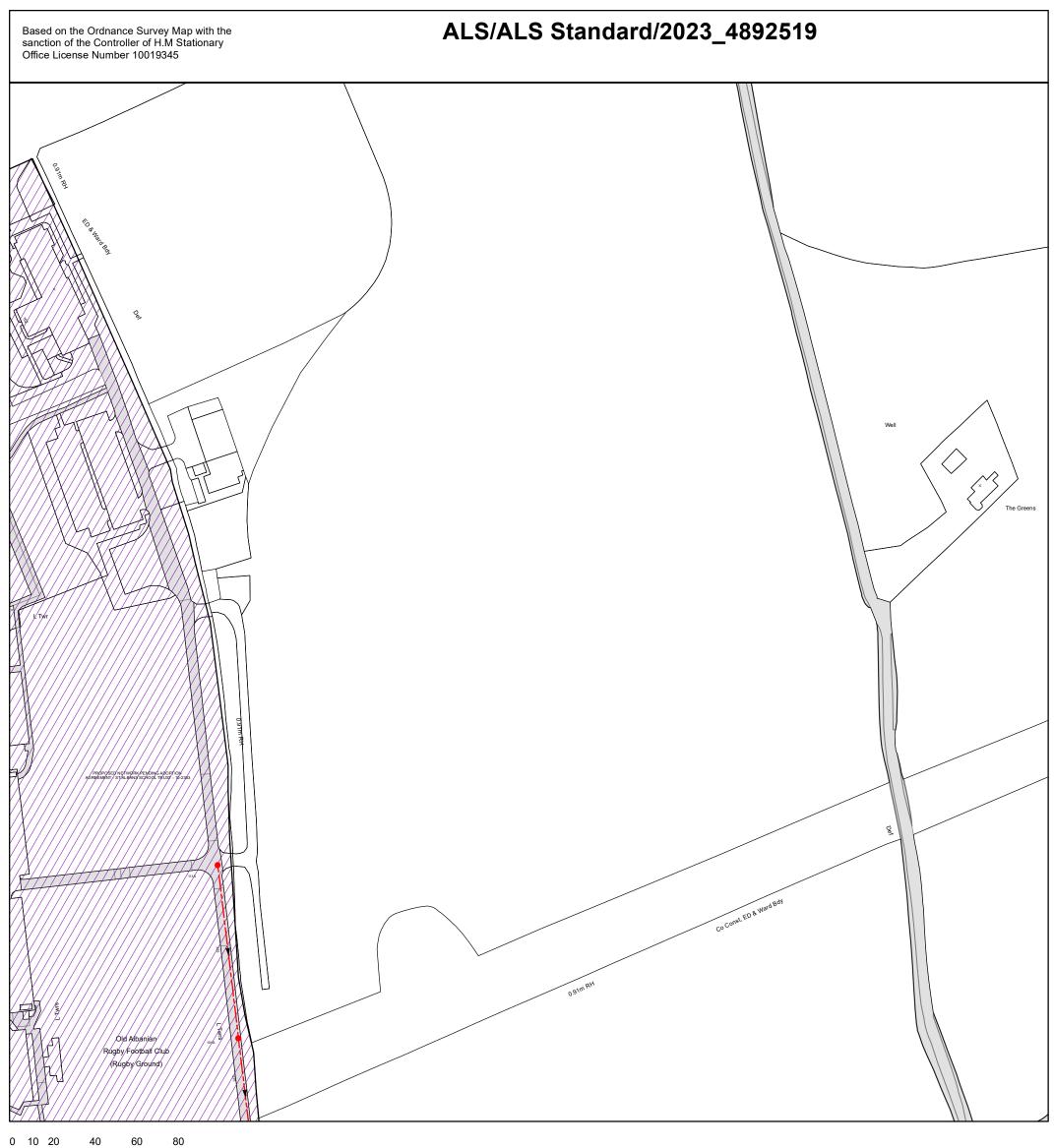
0 10 20 40 60 80



Scale:	1:1789	Com
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515750,210750	
Grid Reference:	TL1510NE	

ALS/ALS	ALS/ALS Standard/2023_4892519							
NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.								
REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL			

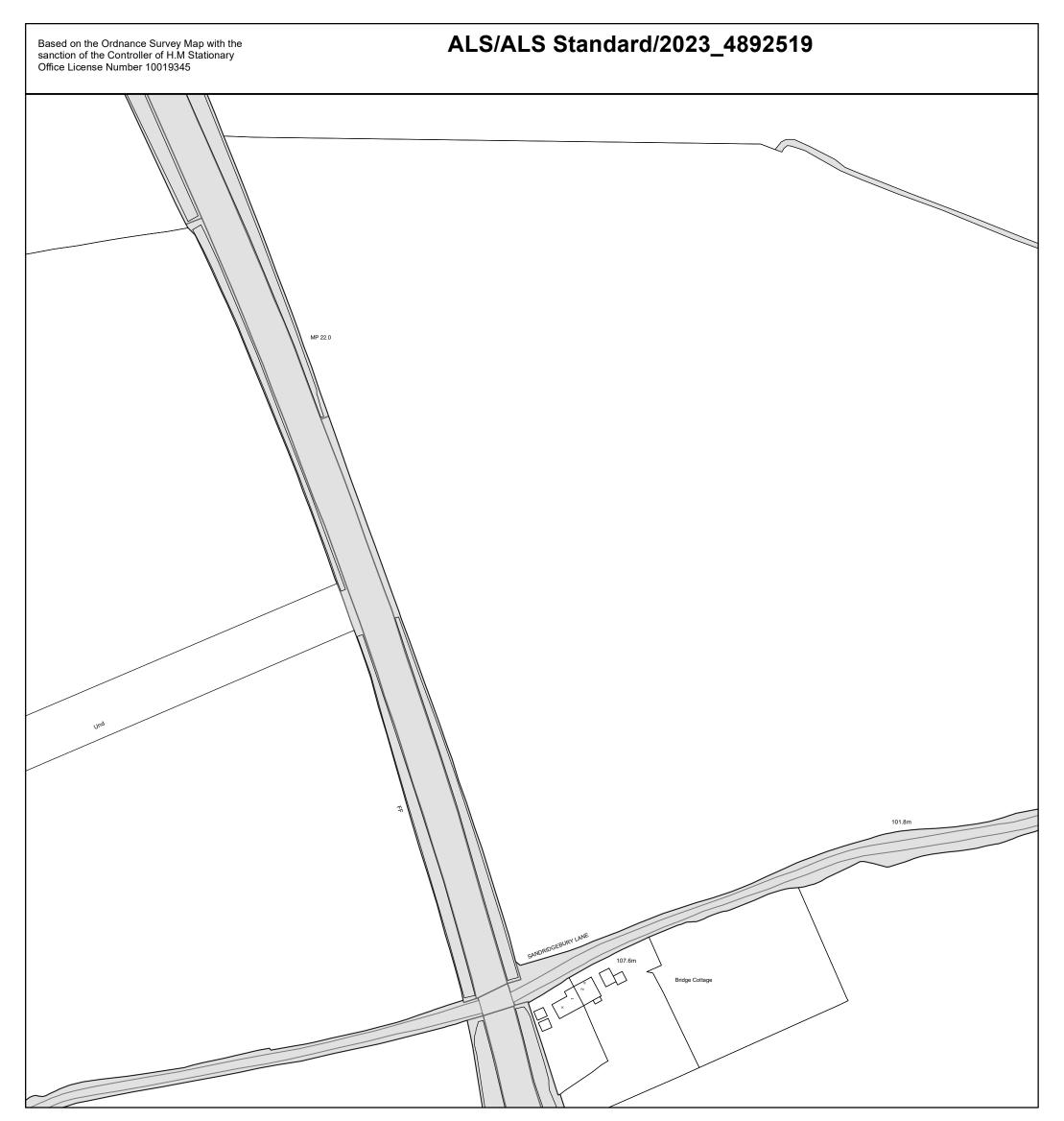
Based on the Ordnance Survey Map with the sanction of the Controller of H.M Stationary Office License Number 10019345


ALS/ALS Standard/2023_4892519

Scale:	1:324	Comments:
Width:	91m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	514750,210250	
Grid Reference:	TL1410SE	

ALS/ALS	ALS/ALS Standard/2023_4892519							
NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.								
REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL			

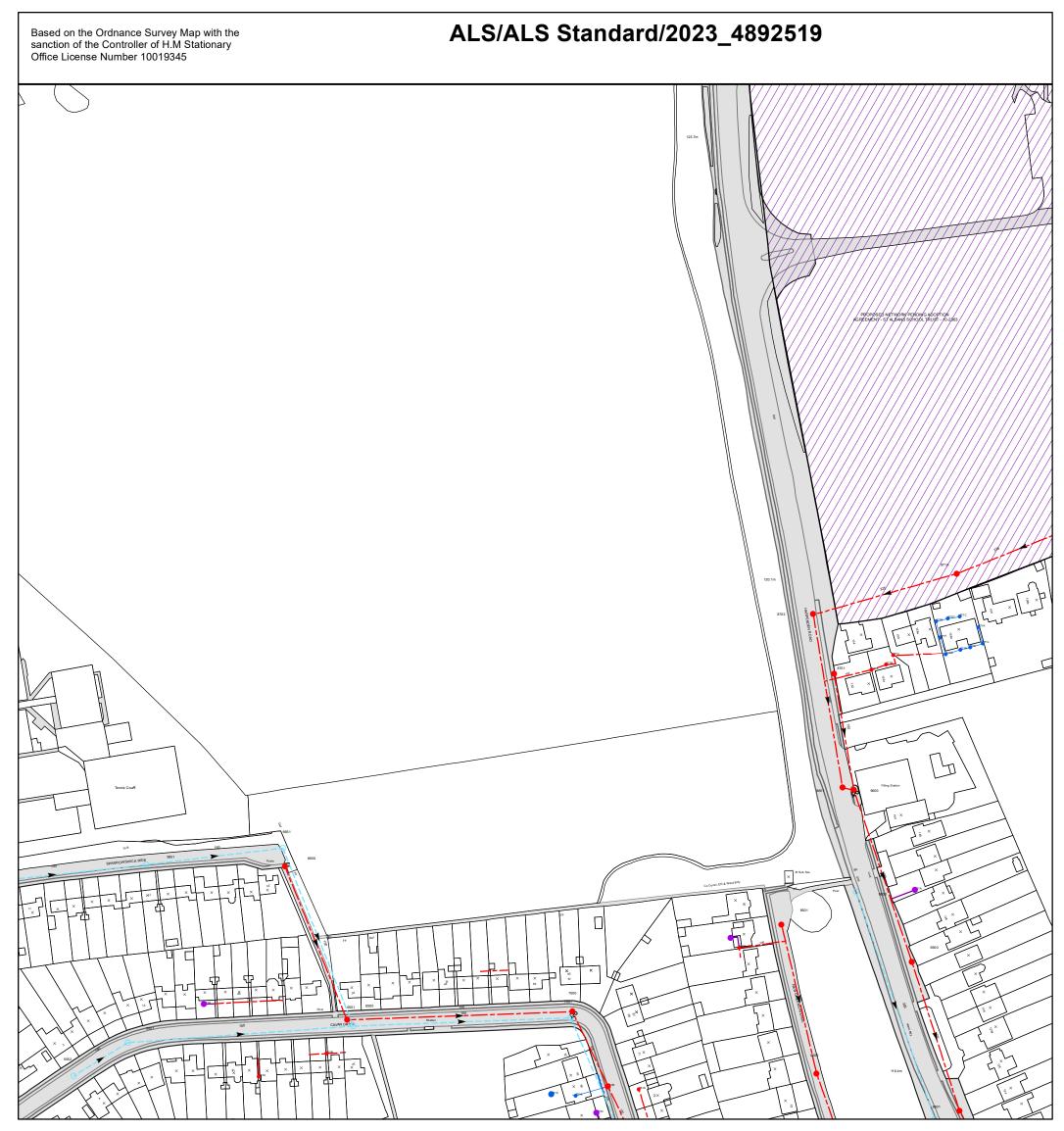
60 80 40



Meters

Scale:	1:1789	Comm
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515250,210250	
Grid Reference:	TL1510SW	

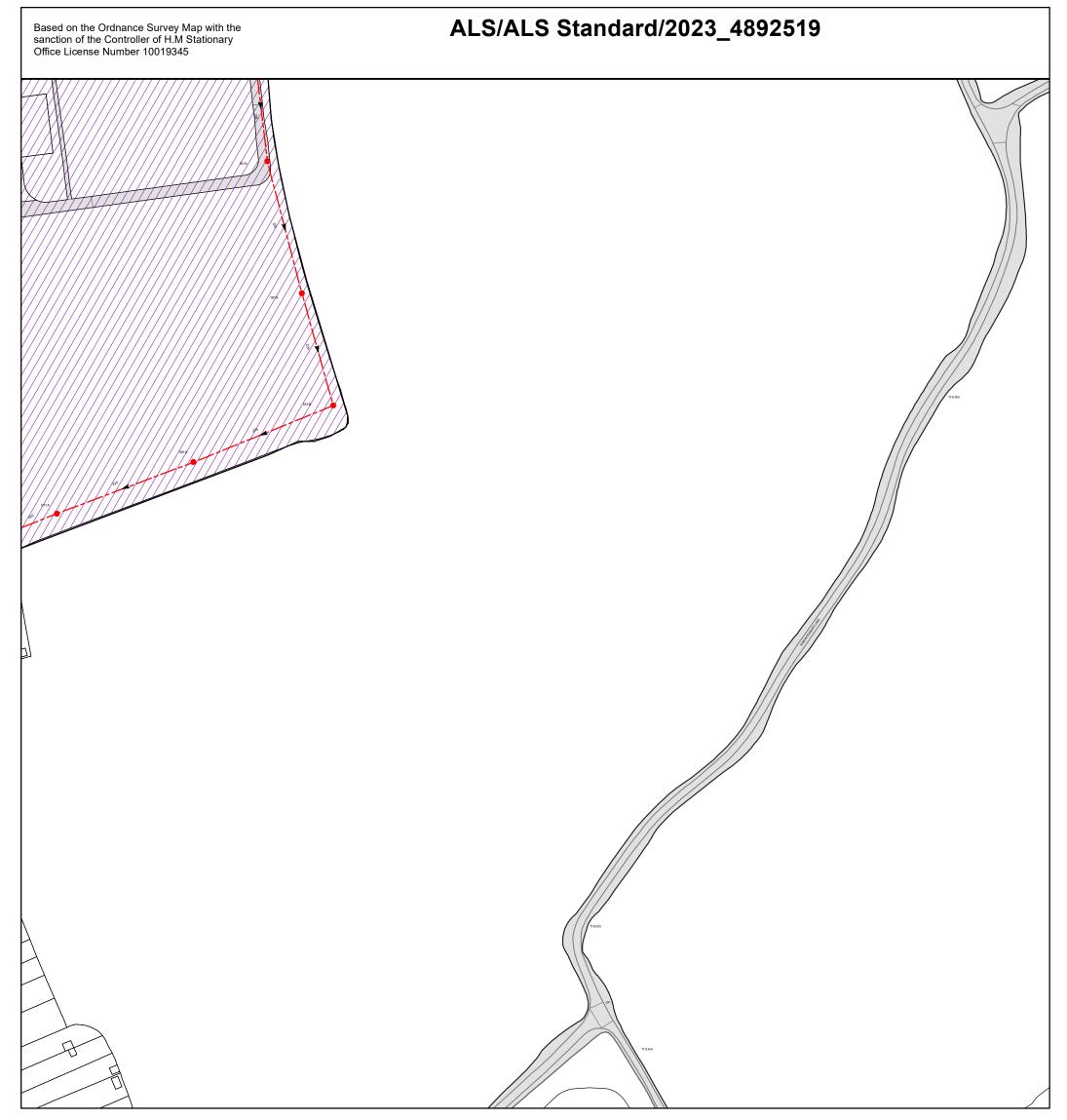
NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.


REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL
111A	120.89	119	101A	119.91	118.18

Scale:	1:1789	Co
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515750,210250	
Grid Reference:	TL1510SE	

ALS/ALS	Standard/2023_	4892519			
NB: Level quoted in me	tres Ordnance Newlyn Datum. The v	value -9999.00 indicates no Survey inf	ormation is available.		
REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL

0 10 20 40 60 80

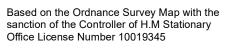


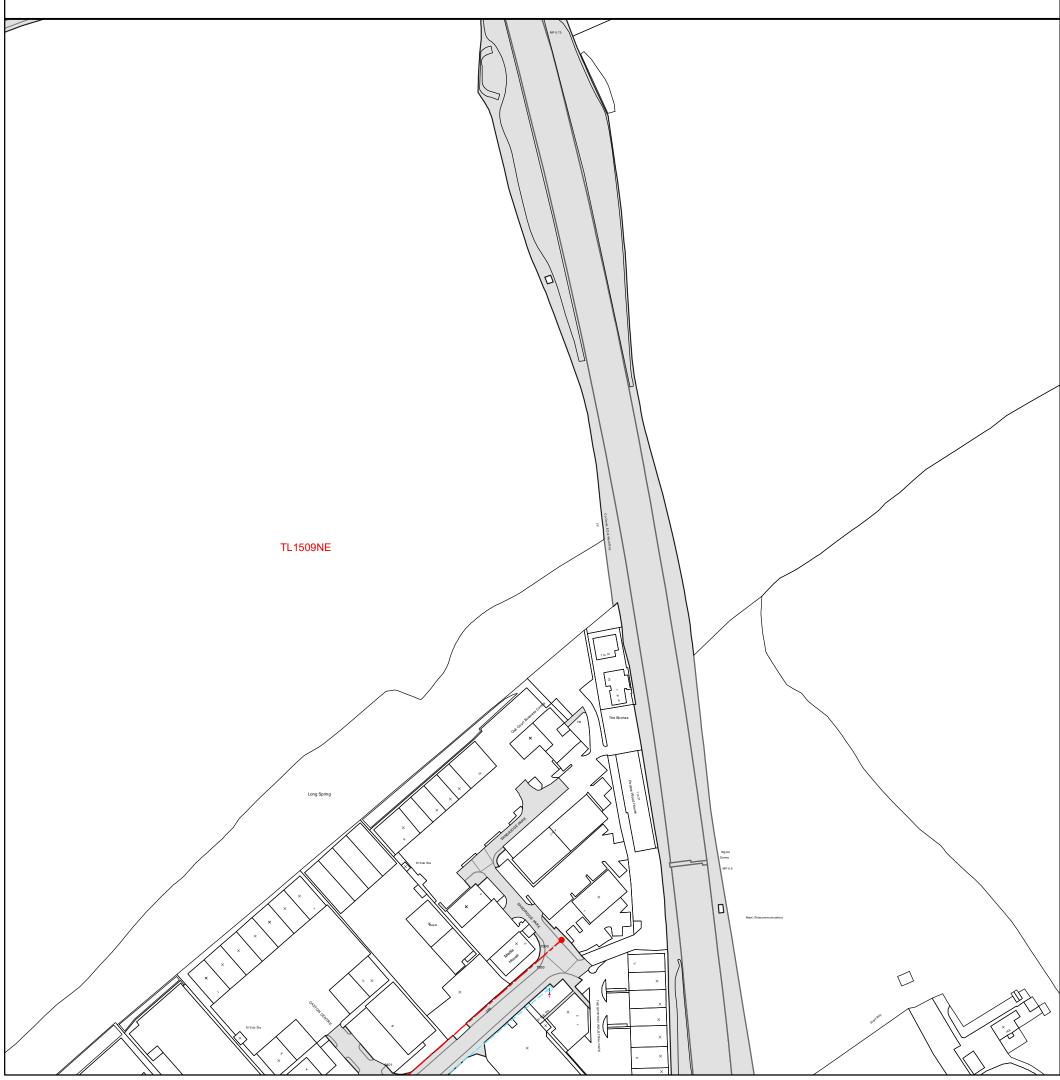
Scale:	1:1789	Com
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	514750,209750	
Grid Reference:	TL1409NE	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
6551	123.77	122.13
5552	126.4	124.95
5651	125.51	124.07
9501	116.41	113.6
9550	116.54	114.82
8500	118.12	116.34
8601	116.93	114.55
7551	121.29	119.79
8701	119.64	114.93
6600	124.03	122.91
9500	116.47	114.01
961A		
751A		
751C		
851B		
971C		
971E		
971D		
971M		
971J		
971H		
651B		

REFERENCE	COVER LEVEL	INVERT LEVEL
971A	120.2	115.35
6500	123.8	121.91
6651	123.99	122.89
8501	118.15	117.17
9600	116.78	114.42
9650	116.49	115.17
8702	119.61	115.26
7500	121.3	119.5
5551	125.98	124.6
971B		
851A		
551A		
751B		
651A		
851C		
971K		
971F		
971L		
9711		
971G		
751D		

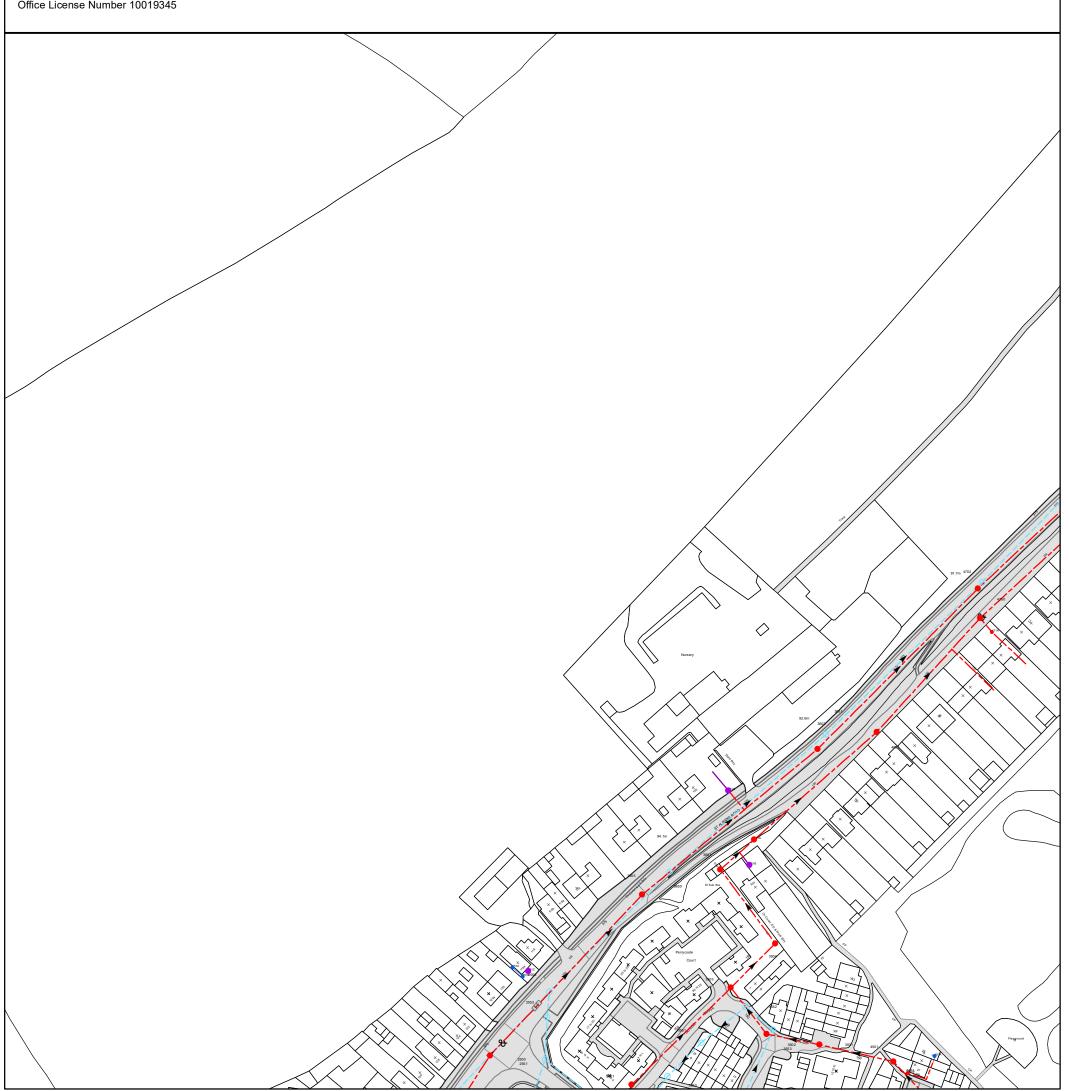

Meters


Scale:	1:1789	Comments:
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515250,209750	
Grid Reference:	TL1509NW	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
071A	120	116.2
081A	119.2	116.55
181A	119.25	117.55

REFERENCE	COVER LEVEL	INVERT LEVEL
181B	118.5	116.9
191A	120.14	117.86

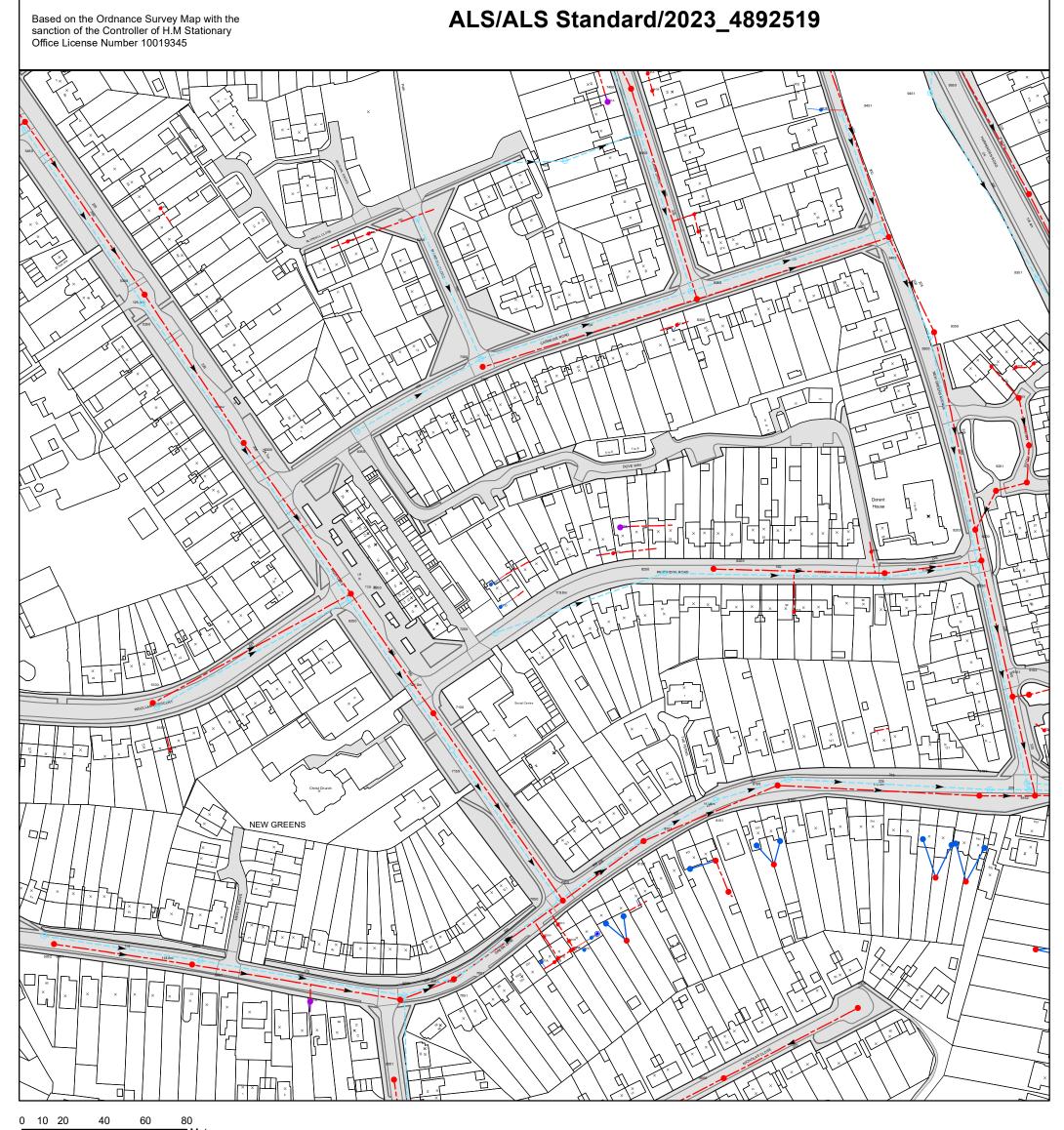


Scale:	1:1789	Com
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515750,209750	
Grid Reference:	TL1509NE	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	INVERT LEVEL
7500	110.33	108.87	7550	110.01	108.47

Based on the Ordnance Survey Map with the
sanction of the Controller of H.M Stationary
Office License Number 10019345

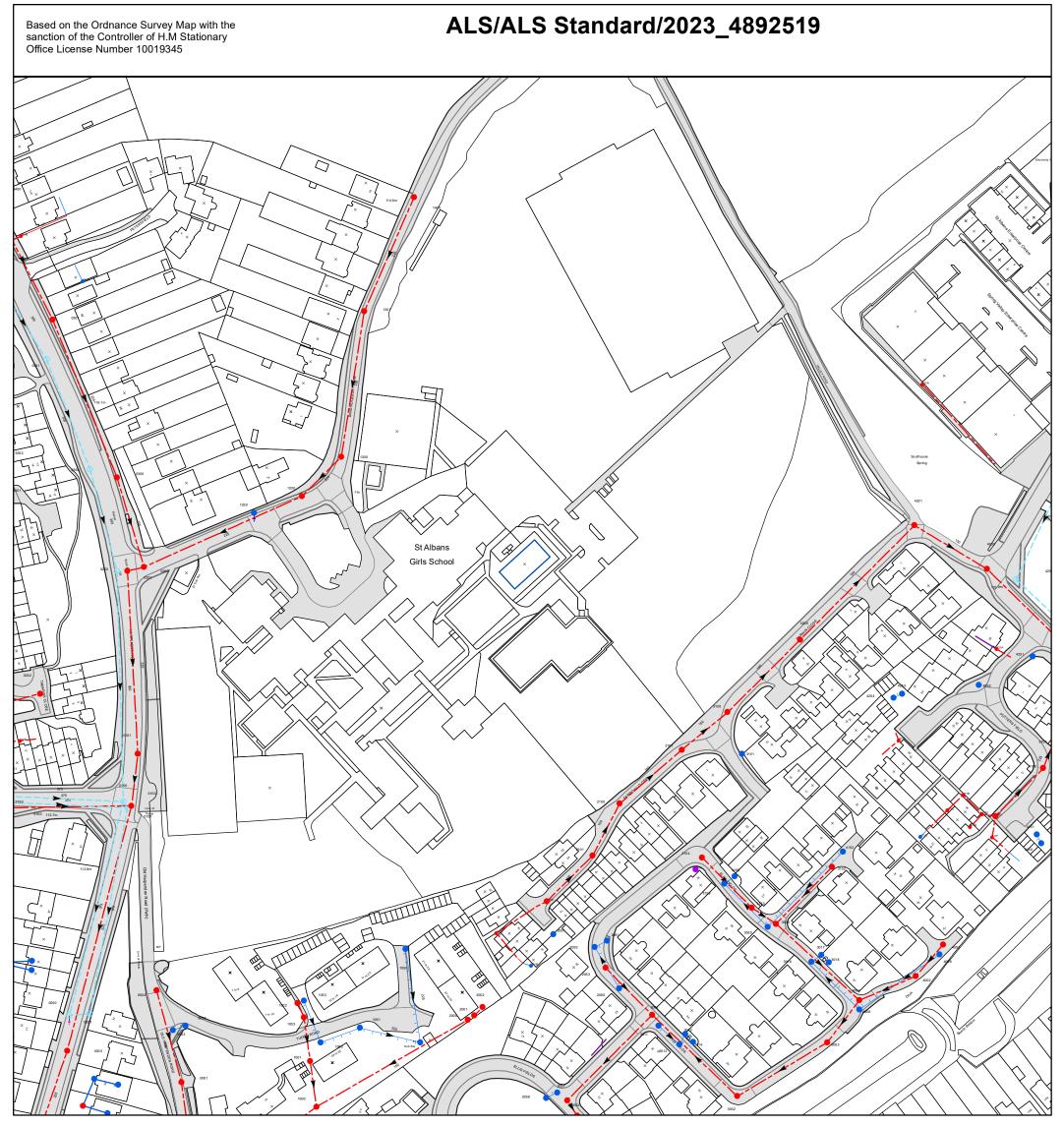


Scale:	1:1789	Comr
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	516250,209750	
Grid Reference:	TL1609NW	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
4501	104.6	102.67
2551	96.34	94.79
2501	100.37	97.95
3650	94.36	92.53
2552	95.45	94.67
4750	91.75	89.98
3501	102.75	100.45
3502	101.94	99.25
3504	99.97	96.9
3601	97.23	96.48
4601	96.25	94.78
3602	92.98	91.27
471A		
251B		
361B		
451B		

REFERENCE	COVER LEVEL	INVERT LEVEL
4702	91.82	90.09
2500	95.93	94.13
3550	100.49	97.79
3551		
2550	95.42	93.59
3505	94.57	92.83
3503	100.19	97.23
3553	101.76	99.64
3552	100.73	98.71
361A		
3651	92.84	91.03
4701	94.59	92.85
251A		
251C		
451A		
361C		



Scale:	1:1789	Com
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	514750,209250	
Grid Reference:	TL1409SE	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
7250	120.42	
7300	122.22	120.38
5400	126.83	123.83
5051	118.45	116.77
5052	120.35	
5000	118.56	116.48
5100	123.96	121.67
6250	122.99	121.2
5300	125.78	122.97
7051	114.09	112.54
81AB		112.01
9201	115.88	113.93
7050	114.39	112.26
81AC	114.00	112.20
70AC		
91AD		
81BA		
9350	117.56	115.83
9300	117.54	114.61
9401	117.64	115.23
9401 91AF	117.04	115.20
9152	111.01	109.07
9101	112.27	110.24
9101 91AC	112.27	110.24
70AD		
9200	114.93	112.7
9450	117.69	116.11
9202	115.6	113.92
8450		
	120.28	118.82
8300 81AD	119.72	117.64
9301	115.81	114.07
9302	116.22	114.07
9203	115.51	113.37
9100	111.6	108.56
831A	111.0	106.56
	114.1	111.20
7001		111.39
5150	123.96	122.21
9151	111.52	109.35
721A	106.80	105
5450 6200	126.82 123.06	125 120.51
	123.06	120.51
841B 911A		
931B		
931C		
641B		
841D		
721C		
841E		
701B		
701D		
511A		
701F		
701G		
701J		
921A		

REFERENCE	COVER LEVEL	INVERT LEVEL
6001	112.38	110.19
7100	119.5	117.32
6350	123.47	121.99
6300	124.67	122.35
7350	122.16	120.68
5001	120.26	
6000	114.5	111.69
6051	114.47	
7150	119.43	117.7
8250	118.72	117.21
8350	119.78	118.29
6450	122.94	121.5
7000	114.42	111.08
8151	114.5	111.79
81AJ		
8200	118.09	115.82
8152	114.52	112.03
9451		
91AH		
81AI		
7400	120.47	118.37
8101	114.55	110.7
8451	117.95	116.59
70AB		
9250	114.93	113.18
91AE		
9251	115.6	114.26
7450		
8150	113.65	111.63
8000	107.71	105.35
9000	107.91	105.53
9102	112.51	110.55
9400	116.69	113.22
9303	116.64	114.9
9351		
8100	113.85	110.25
5350	125.75	124.08
91AG		
9103	111.06	108.71
541A		
9150	111.52	108.93
841A		
9001		
601A		
931A		
641A		
841C		
721B		
721D		
701A		
701C		
701E		
821A		
7011		
701H		

0 10 20 40 60 80

Meters

Scale:	1:1789	Comr
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515250,209250	
Grid Reference:	TL1509SW	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

COVER LEVEL	INVERT LEVEL	REFERENCE	COVER LEVEL	
		3003		
		4100	102.96	
109.15	107.55	1400	114.6	
		4201	106.68	
		0151	113.25	
115.48		0100	113.26	
114.49		0052	109.36	
111.41	108.31	1250	116.36	
	104.5	3152		
		00BB		
108.93		0050	108.93	
107.51		3016		
		2002	109.75	
104.71	102.29	3002		
		1301	115.6	
103.32	102.28	3017		
		3153		
115.57	112.21	3001		
		0301	116.4	
104.94	103.87			
104.18	102.51		110.3	
115.78	114.08			
112.69	110.34			
			109.73	
115.72	113.87			
105.98	104 27			
			107.68	
10	102.10			
			100.22	
113.26				
	109 14		112 92	
111.52	103.14		112.02	
			111.62	
109.79	107.97		111.02	
103.73	101.51			
			103 58	+
			103.00	
			110.00	
			110.99	
		4116		
	109.15 109.15 115.48 114.49 111.41 108.93 107.51 104.71 103.32 115.57	109.15 107.55 115.48 114.49 111.41 108.31 104.5 104.5 108.93 107.51 107.51 102.29 103.32 102.28 104.71 102.29 103.32 102.28 104.94 103.87 104.94 103.87 104.18 102.51 111.321 111.45 115.78 114.08 112.69 110.34 110.81 108.37 115.72 113.87 115.74 113.87 115.75 114.08 111.32 104.18 111.32 104.14	3003 109.15 107.55 111.4 108.93 108.93 108.93 108.93 108.93 103.32 102.28 104.71 102.29 104.71 102.28 101.32 102.28 101.32 102.28 3001 3016 2002 3017 3001 3016 2002 3017 3001 3011 103.32 102.28 3017 3153 3010 3011 2100 3001 2100 3001 2100 3001 2100 3001 2100 3016 2002 3002 104.94 103.87 4004 103.87 4004 1055 115.78 114.08 115.72 113.87 105.33 104.27 105.33 104.27 105.33 104.27 113.26 3004 111.32 109.14	9003 9003 108.15 107.55 114.4 106.68 114.4 108.31 114.4 108.31 107.51 113.26 108.33 100.5 108.31 102.90 108.32 102.28 103.32 102.28 115.57 112.20 115.57 112.21 104.4 103.87 104.4 103.87 104.4 103.87 104.4 102.51 103.4 116.4 112.69 110.34 115.78 114.08 115.78 114.08 115.78 114.08 115.78 114.08 115.71 112.26 115.72 113.24 115.73 112.81 115.74 113.24 115.75 112.26 100.11 116.4 2000 108.13 115.7 112.26 100.24 112.25<

INVERT LEVEL

101.96 113.74 104.68

108.03

106.52

108.05

113.44 103

112.83 108.85 106.23

106.86 114.95

112 112.95 111.15

108.04 107.74 110.05 113.07 112.43

103.8 105.84

110.52

110.53

102.13

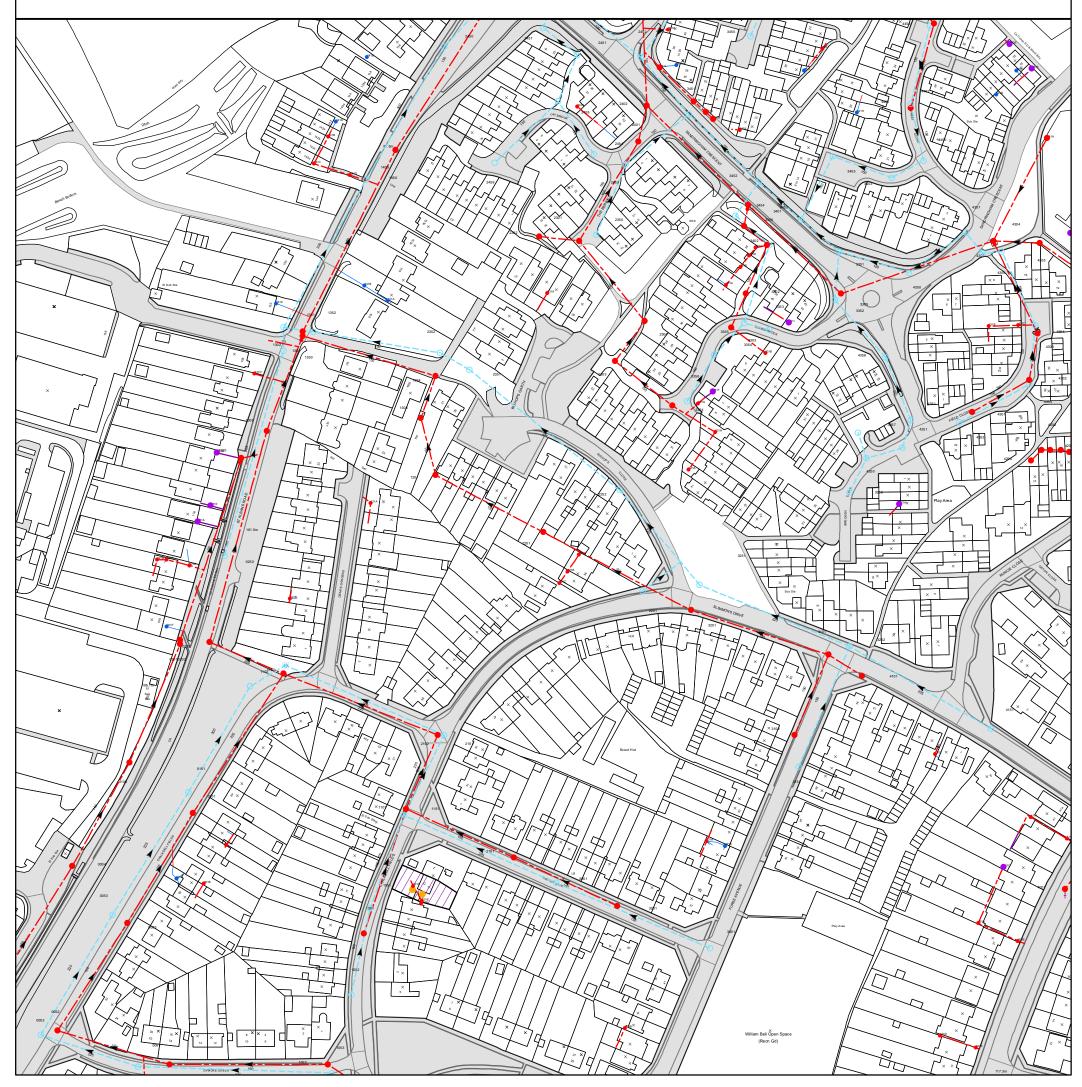
109.32

Based on the Ordnance Survey Map with the sanction of the Controller of H.M Stationary Office License Number 10019345

ALS/ALS Standard/2023_4892519

Meters

Scale:	1:1789	Comments:
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515750,209250	
Grid Reference:	TL1509SE	


NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
6054		
5203		
7152	108.48	
5100	102.77	101.31
8050	112.18	111.29
7400		
6152	103.12	
6450	108.98	107.5
7155	104.7	103.01
7202	104.31	102.8
7056	111.63	110.77
6100	104.12	101.8
7151	108.89	106.79
5002	103.92	101.85
5000	104.59	101.23
7052	110.79	108.71
7201	103.23	101.58
5400	112.76	111.25
5351	106.64	105.11
7252	102.98	101.98
7200	102.91	101.51
7055	111	109.85
5200	103.13	101.69
6401	109.4	107.65
5301	107.7	105.83
6153	103.4	101.75
5101	103.14	101.91
6400	108.54	106.43
7250	104.23	102.56
9055	112.4	111.73
9053	112.31	111.37
9054		
5202	103.32	101.83
6300		
5001	103.65	100.66
501F		
501B		
801A		
901B		
801C		
711A		
601E		
601F		

REFERENCE	COVER LEVEL	INVERT LEVEL
5051	103.6	101.33
5151	102.45	101.98
6051	104.3	103.12
6052	104.3	103.12
7051	108.62	106.88
7050	108.24	
6101	103.23	101.03
6155	102.58	101.89
5250	103.47	
7000	111.34	108.66
8051	110.92	107.93
7401		
7153	107.28	105.56
5201		
5350	107.39	105.91
7251	103.14	102.19
5153		
6053	103.76	102.6
6151	104.15	
7154	103.86	102.43
7001	108.23	105.44
6451	108.05	106.54
5300	107.57	105.54
5152	103.05	102.07
6103	102.79	101.26
6102	103.54	101.23
6154	102.73	101.81
8100	105.57	104.43
9050	112.37	111.64
9051	112.34	111.66
9056		
9052		
7053	111	110.23
501D		
501A		
501E		
501C		
801B		
901C		
9000	111.73	110.21
601D		
601C		

Based on the Ordnance Survey Map with the sanction of the Controller of H.M Stationary Office License Number 10019345

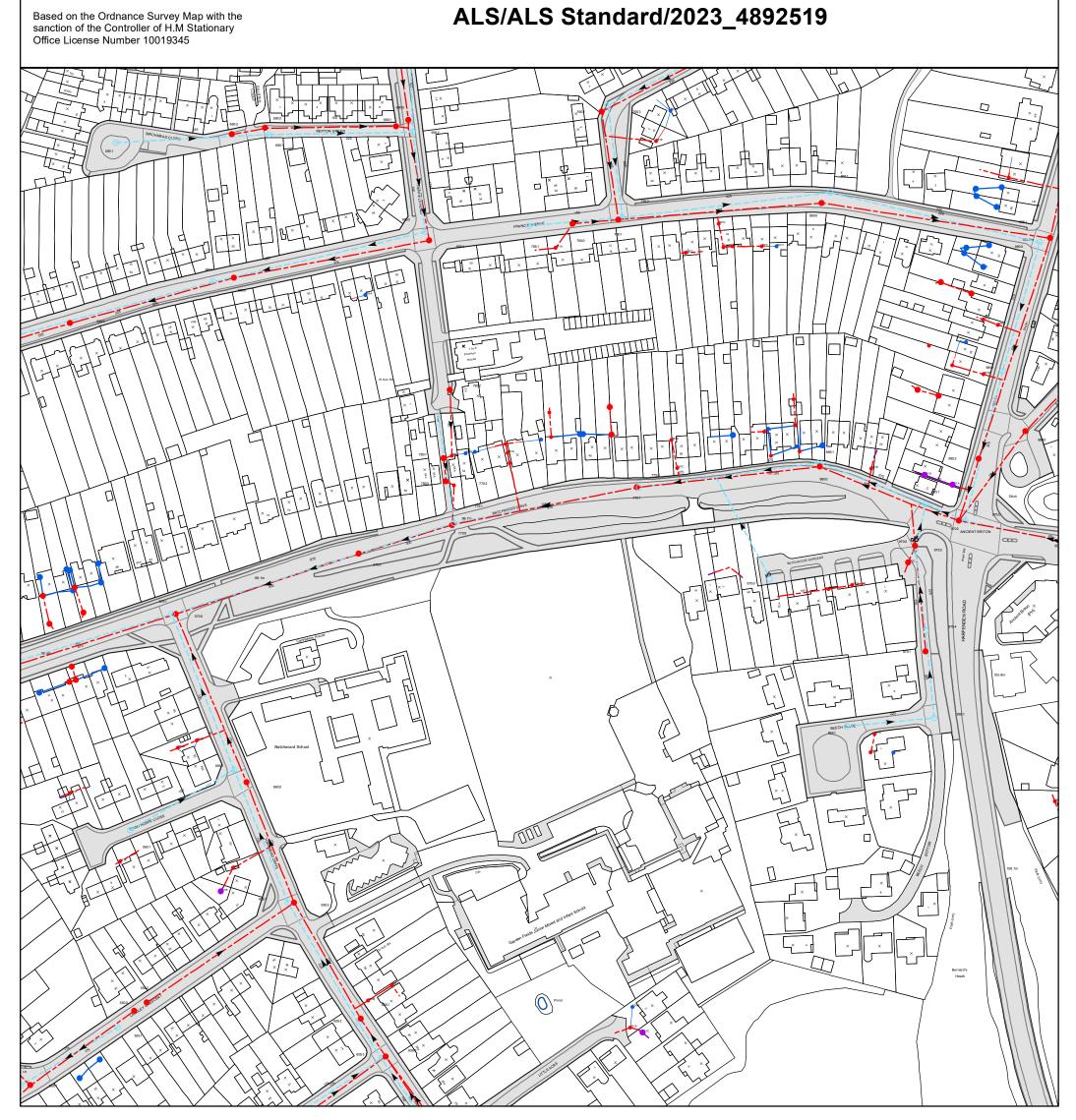
ALS/ALS Standard/2023_4892519

0 10 20 40 60 80

Scale:	1:1789	Co
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	516250,209250	
Grid Reference:	TL1609SW	

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
1153		
3454	106.01	102.48
4350	107.94	106.47
4402	106.69	105.32
4201	112.66	111.1
2454	101.7	100.18
2351	102.45	101.2
2101	113.09	
		111.38
2455	101.52	98.87
3051	116.16	114.97
3402	106.6	103.84
3401	104.4	101.42
2151	110.1	108.74
4151	116.08	114.28
0201	105.69	104.56
2302	102.41	100.77
2452	99.29	96.75
2304	105.35	102.88
0052	112.56	111.23
1304	112.00	111.20
	400.70	100.04
2453	102.73	100.24
3250	112.62	110.96
3355	107.53	106.12
0101	107.48	105.76
1300	99.74	98.09
3151	115.07	113.13
3352	107.49	105.74
0151	107.26	106.16
1053	114.22	113.47
1151		
	110.93	109.72
2252	108.12	106.27
1350	99.03	97.69
1200	101.19	98.69
4353	111.46	109.91
4204	112.65	111.38
3351	106.41	104.63
2303	105.77	104.21
2457	99.78	96.94
0053	109.89	108.63
3455	106.32	103.89
4303	110.78	109.31
4200	112.67	111.01
0004	109.53	108.17
2451	100.39	97.55
1001	111.33	109.51
3452	104.02	102.25
3350	107.23	103.93
4452	105.55	104.53
1302	98.95	96.53
0100	107.38	
		106.46
0250	101.19	99.42
3301	107.19	104.28
021D		
231A		
3303	107.38	105.31
4354	110.74	109.3
141A		
401B		
411A		
1101	111.03	108.6
4101	113.7	
	113.7	111.83
131A		
421A		
341A		
331C		
401E		
341B		
241A		
141B		
341J		
021B		
3305	107.26	105.19
	107.20	105.19
121B		
311A		
131D		
331A	10	9.4
1301	98.89	96.49
141E		
431C		
331F		
321A		
JEIN		

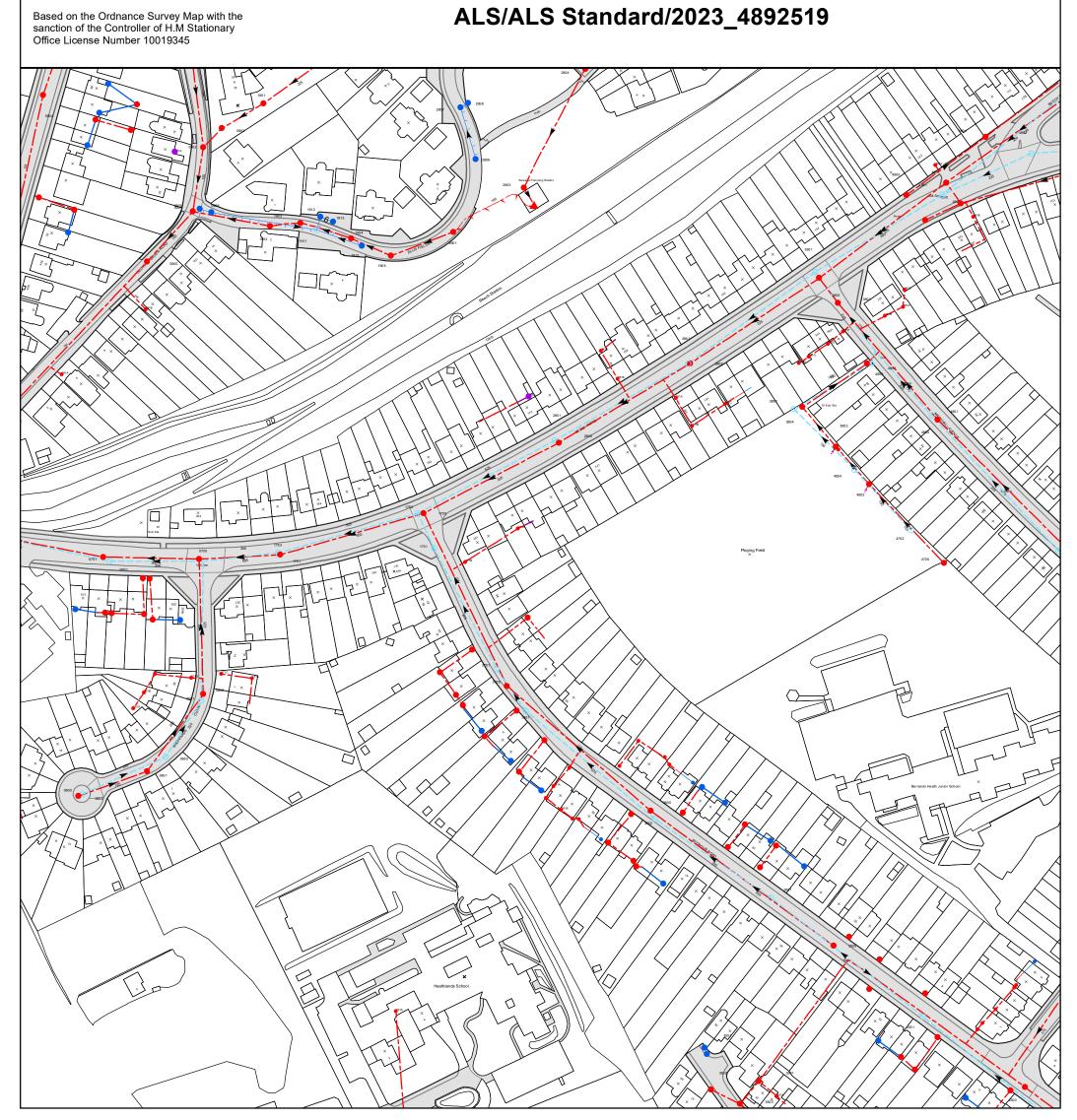

REFERENCE	COVER LEVEL	INVERT LEVEL
3201	110.91	109.56
4251	112.03	110.06
4351 4451	106.6	104.40
4451	117.29	104.19 113.76
2350	102.85	101.09
4202	112.63	111.14
2051	113.96	112.9
3450	102.84	100.95
3354	107.47	104.75
3302	107.42	104.86
4358		
2450	96.46	95.06
0202	105.82	104.66
2456	100.73	98.88
2402	102.23	99.38
2251	110.28	108.73
2401	100.81	98.32
1201	103.69	101.81
2102 3252	110.18 113.64	108.22
0002	112.33	110.67
3357	112.33	111.29
0200	102.92	100.9
3102	114.35	112.74
3453	105.2	103.34
4301	111.71	110.03
1002	114	111.86
3251	110.75	109.04
2001	115.2	112.56
1102	105.92	104.25
0001	114.05	111.24
1152	105.75	103.69
4302	111.49	109.63
3304	107.48	105.41
1352	99.05	98.17
2201	105.27	103.39
4352	111.68	110.51
3356	107.15	105.34
4250	112.12	110.67
4203	112.62	111.22
1052	112.19	110.69
3101 2301	113.09 102.52	111.55 100.42
1450	97.7	96.03
3353	108.96	105.41
2352	100.00	100.41
4401	105.36	103.5
0003	109.97	108.15
0051	113.84	112.44
441B		
021C		
1351	98.98	
4450	107.66	104.06
1051	111.14	110.22
4453	107.23	103.92
401A		
401C		
411B	404.45	
3451	101.45	99.6
1303 1310		
131B		
121A		
021A 401D		
341D		
341D 341C		
141D		
141C		
341H		
201B		
131C		
311B		
331B		
021E		
1400	97.43	95.64
331E		
431B		
331D		
331G		
331H		
		I

ALS/ALS Standard/2023_4892519

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
4356	109.41	108.13
4304	109.33	106.32
4305	110.15	108.06
431A		
3411		
021F		
341M		
221A		
221C		
011A		
411D		
101C		
101A		
441D		

REFERENCE	COVER LEVEL	INVERT LEVEL
4357	109.16	107.62
4355	110.06	108.3
441A		
341K		
021G		
341L		
441C		
221B		
001A		
001B		
3311		
101B		
441E		


Scale:	1:1789	Com
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	514750,208750	
Grid Reference:	TL1408NE	

ALS/ALS Standard/2023_4892519

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	
6552	111.98	110.67
6901	109.93	108.34
55AC 6902	111.79	109.54
56AB	111.79	103.34
5851	107.05	104.38
5951		
57AE		
5552	109.75	106.45
7801	100.59	99.1
6500	113.24	110.91
7800	100.16	98.74
7700	99.46	95.88
5500	108.49	106.49 103.52
6800 6953	107.38	104.89
5800	100.4	104.03
57AF		
6900	110.12	108.28
5651	101.19	100.51
7951	106.07	103.87
57AC		
9752	102.44	
98AB		
78AH		
8651	105.07	104.07
98BC	101 70	07.59
8851 9751	101.79 102.18	97.58 97.78
7752	102.18	97.03
99BF	100.40	97.05
9800	102.37	100.31
7952	105.8	103.83
99AI		
78AD		
7900	105.94	103.39
88AB		
9951	103.94	101.95
8750	101.13	99.72
891A		
5751	97.61	94.92
6502 98BD	105.31	102.9
6651	101.48	99.29
6951	111.63	109.44
9651	104.98	103.6
891B		
891E		
99BH		
57AD		
751A		
981A		
781A		
78BJ 77AB		
78CA		
561A		
651A		
561B		
661A		
981B		
98AG		
791A		
98AI		
88BA		
88BG		
88AI		
781B 561C		
871A		
881C		
8911		
971B		
971C		
961B		
3010		
961C		

REFERENCE	COVER LEVEL	INVERT LEVEL
6700	98.43	94.97
6904	106.4	104.31
57BE 5700	07.47	02.86
5700 57AG	97.17	93.86
5501	109.4	104.87
6501	111.61	109.74
6600	101.43	99.26
57BD		
6553	113.55	111.69
5551	108.91	107.57
7802	102.67	101.5
7751	99.46	96.6
6903	111.91	109.79
6952	109.67	108.08
57CC		
57CD		
57BB 5502		
6551	105.73	103.97
55AD	103.73	103.37
99BA		
99AJ		
7953	108.01	106.4
78AF		
9753	102.15	99.96
98AC		
9701	103.24	101.34
7701		
99BE		
9851	102.86	100.2
9702	102.73	
8800	101.89	97.07
9700	102.06	100.31
9900	104.07	
78AC	405.70	
7901	105.76	103.08
9852 99BG		
8951	105.07	102.88
57CA	100.07	102.00
99AH		
7902	106.67	104.37
9754	103.24	102.18
8900	104.91	102.06
57CB		
891D		
57AB		
88BH		
751B		
751C		
971A		
78AE 78BI		
7702	100	98.15
78AG		
891G		
651B		
681A		
99AD		
981C		
98AH		
981D		
881A		
88AJ		
88BJ		
88BI		
7803	100.86	99.31
57BC		
881B		
891H		
891C		
981E 061C		
961A		

Meters

Scale:	1:1789	Comr
Width:	500m	
Printed By:	ASuji	
Print Date:	20/10/2023	
Map Centre:	515250,208750	
Grid Reference:	TL1508NW	

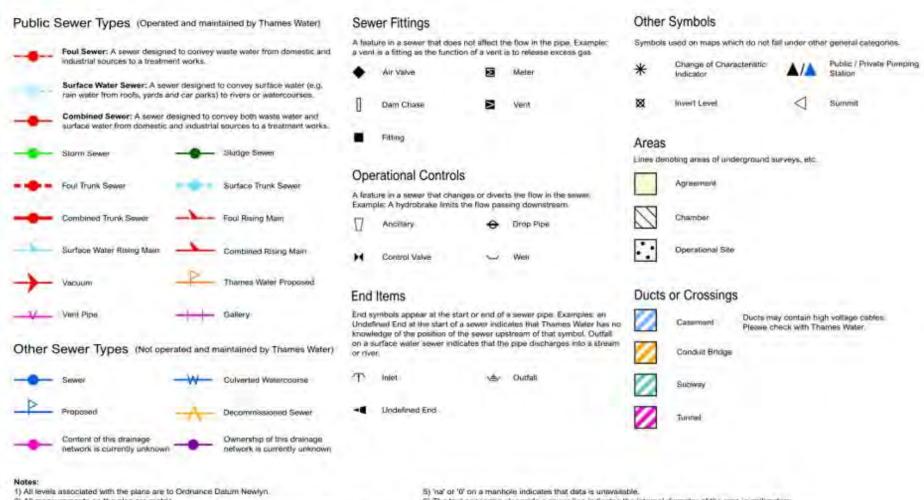
ALS/ALS Standard/2023_4892519

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
1911 26DC		
35AG		
26AI		
4800	108.92	107.03
0906		
1752	104.82	
27AC	104.02	
	104.12	08.0
1753	104.12	98.9
2651	110.73	109.29
2904		
45AF		
09BD		
0601	107.22	105.05
07BC		
0700	103.76	97.93
3802	105.4	99.08
1901	108.46	
2907		
3852		
09BJ		
1905		
45AJ		
1903		
26EB		
45BC		
36BC		
07BD		
07BE		
3803	107.92	106.17
3501	122.34	120.65
07AJ		
45CD		
36BI		
4802	109.57	108.45
0602	105.41	103.25
	103.41	103.23
09BI		
3951	105.15	
4500	122.47	119.77
09AF		
09BC		
4903	104.64	99.78
2851	105.07	99.33
26BB		
4900	104.64	101.84
45CE		-
1751	105.27	103.29
2906	100.21	100.20
36BD	405.40	
2800	105.12	
4751	114.98	113.23
09CA		
0904	106.09	
0600	108.33	106.55
1913	105.06	102.75
26CG		
3800	105.17	99.47
45AB	100.11	
36BB		
45BB		
3552		
4902	104.49	102.93
054 4		
381B		
381B 061B		
381B 061B 071A		
381B 061B 071A 4854		
381B 061B 071A 4854 2901	120.26	119.21
381B 061B 071A 4854 2901 3651	120.36	118.21
381B 061B 071A 4854 2901 3651 281A	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D	120.36	118.21
351A 381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D 381F 271B	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D 381F 271B	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D 381F 271B 261A	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D 381D 381F 271B 261A 26BJ	120.36	118.21
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D 381F 271B 261A 261A 26BJ 26CA	120.36	
381B 061B 071A 4854 2901 3651 281A 081A 481B 091A 381D 381F		

REFERENCE	COVER LEVEL	
2700 264 F	109.68	107.45
36AF		
4752		
26BA	400.45	07.04
0701	103.15	97.84
0652	107.21	105.47
26CH		
45BA		
2903		
2752	422.22	120
4551	122.33	120
4901	104.55	102.98
07BA 0900	102.61	102.13
0900	103.61 104.51	103.04
0905	104.51	103.04
0905 09AH		
26CI		
3851	105.35	
3801	105.5	103.04
07BG	105.5	105.04
4853		
4853 45BH		
26DJ		
4851	108.76	107.15
36CA	100.70	107.10
4952	104	100.7
4952 09BB		100.7
3500	121.67	120.43
1700	121.67	98.42
36AG	104.3	30.42
36DD		
3502	122.44	121.38
3804	106.8	105.72
	105.55	103.72
0651 0902	105.45	103.91
36AE	105.45	103.91
1902		
0653	108.29	106.78
09AG	108.29	100.78
3600	116.61	114.54
1912	110.01	103.04
1912		103.04
3652	116.73	115.09
36BJ	110.75	110.00
26BC		
27AB		
26DD		
3503	122.69	121.22
4700	122.00	121.22
0903	107.93	
1904	107.85	
1701	104.13	98.1
07BF	104.10	30.1
2908	105.36	103.86
3551	122.2	121.02
26DE	166.6	
4951	104.55	
2751	108.87	107.26
26EA	100.01	
4904	104.85	102.21
491A	10100	
381A		
381C		
061A		
071B		
07BB		
0751	103.14	
4801	106.81	105.42
281B	100.01	
481A		
481A 481C		
491B		
381E		
381G		
261B		
261B 26CD		
26CD 26CC		
26CC 26CB		
45DD		
45DB		
4000		

ALS/ALS Standard/2023_4892519


NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
45CI		
45DA		
26AB		
36CG		
081B		
281C		
071C		

REFERENCE	COVER LEVEL	INVERT LEVEL
45CJ		
26AC		
36CI		
36CF		
271A		
171A		

Asset Location Search - Sewer Key

- 2) All measurements on the plan are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising maints) indicate the direction of flow 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

6) The text appearing alongside a sever line indicates the internal diameter of the pipe in milimeters. Text next to a menhole indicates the manhole reference number and should not be taken as a massurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Payment Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment within 14 days of the date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service or will be held to be invalid.
- 4. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 5. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 6. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800.

If you are unhappy with our service, you can speak to your original goods or customer service provider. If you are still not satisfied with the outcome provided, we will refer the matter to a Senior Manager for resolution who will provide you with a response.

If you are still dissatisfied with our final response, and in certain circumstances such as you are buying a residential property or commercial property within certain parameters, The Property Ombudsman will investigate your case and give an independent view. The Ombudsman can award compensation of up to $\pounds 25,000$ to you if he finds that you have suffered actual financial loss and/or aggravation, distress, or inconvenience because of your search not keeping to the Code. Further information can be obtained by visiting www.tpos.co.uk or by sending an email to admin@tpos.co.uk.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0300 034 2222 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking
Please Call 0800 009 4540 quoting your invoice number starting CBA or ADS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater.co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Appendix D Proposed Landscape Framework Plan

Appendix E Pre-Application Correspondence

From:	Chalk, Laurence
To:	Samantha Furey; Charlotte Turner
Cc:	Rumble, John; Marsili, Alessandro; Planning
Subject:	RE: [PJA: 05920] - Information Request - Water Extraction and Infiltration
Date:	19 June 2024 16:36:30
Attachments:	image001.png
	image002.png
	image004.png
	image006.png
	image007.png
	image008.png
	image009.png
	image011.png

Good Afternoon Samantha and Charlotte,

We appreciate you getting in contact with us.

Due to the location of the proposal outside of SPZ2, we would have no particular requirements to advise on from our own water abstraction for supply perspective. We would only recommend best practice to protect the water quality in the environment and suggest you contact the Environment Agency for further advise and specifications on this, if you haven't done so already.

Thank you again for checking.

Kind regards

Laurence Chalk Catchment Adviser Catchment Management

Affinity Water Limited Tamblin Way, Hatfield, Hertfordshire AL10 9EZ Email: <u>laurence.chalk@affinitywater.co.uk</u> For Catchment Management: <u>catchmentmanagment@affinitywater.co.uk</u> For Planning Applications: <u>planning@affinitywater.co.uk</u> www.affinitywater.co.uk || www.facebook.com/affinitywater || www.twitter.com/affinitywater || www.linkedin.com/company/affinity-water

From: Marsili, Alessandro < Alessandro. Marsili@affinitywater.co.uk>

Sent: Wednesday, June 19, 2024 4:25 PM

To: Chalk, Laurence <Laurence.Chalk@affinitywater.co.uk>; Planning <planning@affinitywater.co.uk> **Cc:** Asset Information Team Mailbox <ait@affinitywater.co.uk>; Pagonas, Michail

<michail.pagonas@affinitywater.co.uk>; Rigby, Alex <alex.rigby@affinitywater.co.uk>; Rumble, John <john.rumble@affinitywater.co.uk>

Subject: RE: [PJA: 05920] - Information Request - Water Extraction and Infiltration

@Chalk, Laurence,

As discussed

From: Samantha Furey <<u>samantha.furey@pja.co.uk</u>>
Sent: Wednesday, June 19, 2024 4:23 PM
To: Charlotte Turner <<u>Charlotte.turner@pja.co.uk</u>>; Marsili, Alessandro <<u>Alessandro.Marsili@affinitywater.co.uk</u>>;

Planning <<u>planning@affinitywater.co.uk</u>> Cc: Asset Information Team Mailbox <<u>ait@affinitywater.co.uk</u>>; Pagonas, Michail <<u>michail.pagonas@affinitywater.co.uk</u>>; Rigby, Alex <<u>alex.rigby@affinitywater.co.uk</u>>; Rumble, John <<u>john.rumble@affinitywater.co.uk</u>> Subject: RE: [PJA: 05920] - Information Request - Water Extraction and Infiltration

CAUTION: This email originated from outside of the organisation. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Good afternoon,

Would you be able to advise when this request will be investigated as we would be grateful if a response could be provided as soon as possible.

If you have any queries, please do not hesitate to contact me.

Best wishes, Samantha

Samantha Furey Senior Engineer T. 0121 387 4004 Park Point, High Street, Longbridge, Birmingham, B31 2UQ, UK www.pja.co.uk

From: Charlotte Turner <<u>Charlotte.turner@pja.co.uk</u>>
Sent: Thursday, June 6, 2024 8:20 AM
To: Marsili, Alessandro <<u>Alessandro.Marsili@affinitywater.co.uk</u>>; Planning <<u>planning@affinitywater.co.uk</u>>
Cc: Asset Information Team Mailbox <<u>ait@affinitywater.co.uk</u>>; Pagonas, Michail
<<u>michail.pagonas@affinitywater.co.uk</u>>; Rigby, Alex <<u>alex.rigby@affinitywater.co.uk</u>>; Rumble, John
<<u>john.rumble@affinitywater.co.uk</u>>; Samantha Furey <<u>samantha.furey@pja.co.uk</u>>
Subject: RE: [PJA: 05920] - Information Request - Water Extraction and Infiltration

Hi Alessandro,

Thank you very much for passing our query onto the planning team.

Would you be able to advise when this request will be investigated as we would be grateful if a response could be provided as soon as possible.

If you have any queries, please do not hesitate to contact me.

Kind regards,

Charlotte Turner

Charlotte Turner Flood Risk & Drainage Engineer T. 0121 387 7923 Park Point, High Street, Longbridge, Birmingham, B31 2UQ, UK www.pja.co.uk

From: Marsili, Alessandro <<u>Alessandro.Marsili@affinitywater.co.uk</u>>
Sent: Tuesday, May 28, 2024 7:12 AM
To: Charlotte Turner <<u>Charlotte.turner@pja.co.uk</u>>; Planning <<u>planning@affinitywater.co.uk</u>>
Cc: Asset Information Team Mailbox <<u>ait@affinitywater.co.uk</u>>; Pagonas, Michail
<<u>michail.pagonas@affinitywater.co.uk</u>>; Rigby, Alex <<u>alex.rigby@affinitywater.co.uk</u>>; Rumble, John
<<u>john.rumble@affinitywater.co.uk</u>>

Subject: RE: [PJA: 05920] - Information Request - Water Extraction and Infiltration

Hello Charlotte,

Thank you for reaching us regarding the proposal to infiltrate (via soakaway?) surface water in the detailed development. I cc the planning team who will advise about the condition for infiltrations.

Kind regards

Alessandro Marsili MSc FGS CGeol Senior Asset Manager – Hydrogeology Team Asset Strategy and Capital Delivery Directorate

Affinity Water Limited Registered Office Tamblin Way, Hatfield, Herts, AL10 9EZ m +44 (0)7557 579431 alessandro.marsili@affinitywater.co.uk www.affinitywater.co.uk

affinitywater.co.uk || facebook.com/affinitywater || twitter.com/affinitywater || linkedin.com/company

From: Asset Information Team Mailbox <ait@affinitywater.co.uk>
Sent: Friday, May 24, 2024 1:30 PM
To: Marsili, Alessandro <<u>Alessandro.Marsili@affinitywater.co.uk</u>>; Pagonas, Michail
<<u>michail.pagonas@affinitywater.co.uk></u>
Cc: Asset Information Team Mailbox <<u>ait@affinitywater.co.uk</u>>
Subject: RE: [PJA: 05920] - Information Request - Water Extraction and Infiltration

Hi Alessandro & Michail,

Is this enquiry from PJA re groundwater protection something you could take on and reply to please?

Or should it go to the Planning Team and then to Catchment Protection to respond to? Thanks.

Regards

Alex Rigby Asset Manager GIS Asset Information Team

Affinity Water Limited Tamblin Way, Hatfield, Hertfordshire AL10 9EZ Mobile: 07725 069389

Email: alex.rigby@affinitywater.co.uk www.affinitywater.co.uk || www.facebook.com/affinitywater || www.twitter.com/affinitywater || www.linkedin.com/company/affinity-water

Affinity Water

Together we can all waste less water to Save Our Streams

Find out more >

From: Development Experience (inbox) <<u>dx@affinitywater.co.uk</u>>
Sent: Friday, May 24, 2024 12:04 PM
To: Asset Information Team Mailbox <<u>ait@affinitywater.co.uk</u>>
Cc: Development Experience (inbox) <<u>dx@affinitywater.co.uk</u>>
Subject: FW: [PJA: 05920] - Information Request - Water Extraction and Infiltration

Good morning, Asset Management team,

Please could you assist with a response to the email below?

I'm not certain if this needs to be addressed to Thames Water for surface water infiltration.

Kind Regards

Maya Fernandes

Contact Centre Support Agent Development Experience

Affinity Water Limited Tamblin Way, Hatfield, Hertfordshire AL10 9EZ Tel: 03453 572 428 Email: dx@affinitywater.co.uk www.affinitywater.co.uk || www.facebook.com/affinitywater || www.twitter.com/affinitywater || www.linkedin.com/company/affinity-water

From: Charlotte Turner <<u>Charlotte.turner@pja.co.uk</u>>
Sent: Thursday, May 23, 2024 4:03 PM
To: Development Experience (inbox) <<u>dx@affinitywater.co.uk</u>>
Cc: Samantha Furey <<u>samantha.furey@pja.co.uk</u>>
Subject: [PJA: 05920] - Information Request - Water Extraction and Infiltration

CAUTION: This email originated from outside of the organisation. Do not click links or open attachments unless you recognise the sender and know the content is safe.

Hello,

PJA have been appointed to provide flood risk and drainage advice in relation to a development at St Albans. OS Coordinates: 515288 , 209785. Please find a Site Location Plan below:

It is our understanding that the Site is situated within Zone 3 – Total Catchment, assumed to be associated with the Principal Aquifer underlying the Site within the bedrock geology.

Infiltration testing in accordance with BRE Digest 365 Design Guidance has been undertaken at the Site, demonstrating that surface water attenuated on-Site could be discharged via infiltration methods. As the Site is situated within a source protection zone, we would be grateful if Affinity Water could advise on the level of treatment required to the attenuated surface water on-Site before discharging via infiltration.

Furthermore, it is our understanding that Affinity Water currently extract water from the Principal Aquifer underlying the Site. As such, we would welcome any additional thoughts or comments you may have in relation to surface water discharging from the Site via infiltration.

If you have any queries, please do not hesitate to contact me.

Kind regards,

Charlotte Turner

Charlotte Turner Flood Risk & Drainage Engineer T. 0121 387 7923 Park Point, High Street, Longbridge, Birmingham, B31 2UQ, UK www.pia.co.uk

Registered Office Address: Park Point, 17 High Street, Longbridge, Birmingham, West Midlands, B31 2UQ Registered in England. Phil Jones Associates Limited, No. 04685684 & PJA Civil Engineering Limited, No. 1041215

This e-mail (including any attachments) is confidential and may also be legally privileged or otherwise protected from disclosure. If you are not the intended recipient of this e-mail or any parts of it please notify us by reply e-mail or by telephone on 01707 268 111 immediately on receipt and then delete the message from your system. You should not disclose the contents to any other person, nor take copies nor use it for any purposes and to do so could be unlawful. The presence of this footnote indicates: this email message has been tested for the presence of known computer viruses, unless the email has been encrypted (in part or full) wherein the email will not be checked for computer viruses. All incoming and outgoing emails may be monitored in line with current legislation. Affinity Water Limited (Company Number 02546950) is registered in England and Wales having their registered office, at Tamblin Way, Hatfield, Hertfordshire, AL10 9EZ. www.affinitywater.co.uk

This e-mail

(including any attachments) is confidential and may also be legally privileged or otherwise protected from disclosure. If you are not the intended recipient of this e-mail or any parts of it please notify us by reply e-mail or by telephone on 01707 268 111 immediately on receipt and then delete the message from your system. You should not disclose the contents to any other person, nor take copies nor use it for any purposes and to do so could be unlawful. The presence of this footnote indicates: this email message has been tested for the presence of known computer viruses, unless the email has been encrypted (in part or full) wherein the email will not be checked for computer viruses. All incoming and outgoing emails may be monitored in line with current legislation. Affinity Water Limited (Company Number 02546950) is registered in England and Wales having their registered office, at Tamblin Way, Hatfield, Hertfordshire, AL10 9EZ. www.affinitywater.co.uk

Growth and Environment

Samantha Furey – PJA Park Point 17 High Street Birmingham B31 2UQ Lead Local Flood Authority Post Point CHN 215 Hertfordshire County Council County Hall, Pegs Lane HERTFORD SG13 8DN www.hertfordshire.gov.uk

Contact Flood Risk Management Team Email <u>FRMConsultations@hertfordshire.gov.uk</u>

Date 20 August 2024

Dear Ms Furey,

PRE/2024/SADC/02 – Land North of St Albans (Woollam Park), East of Harpenden Road, St Albans

Thank you for your request for pre application advice, received 24 June 2024, relating to the proposed development of around 1000 dwellings on Greenfield Land to the North of St Albans.

We would like to offer some guidance in relation to the flood risk and surface water drainage that may concern the proposed site.

- The site is at high flood risk from surface water in the high-risk scenario (more than 3.33% chance of flooding each year) showing 30cm-90cm of flooding from two distinct surface water flow paths travelling west to east (see Figure 1). It is unknown if there is a risk of groundwater flooding. We assume that a sequential test has been undertaken at this location that considers all sources of flooding.
- We expect the application to provide a suitable Flood Risk Assessment, in proportion to the risks of flooding at this location. The FRA will be required to include surface water flow path modelling to inform development areas available and how the drainage strategy should be developed. Groundwater monitoring (at least covering February, March and April) and overview of the long-term regional groundwater level maximum should be included in an FRA. The FRA should also consider the drainage from the railway line, whilst on an embankment, a drainage channel may exist along the toe of it. The existing roads should be considered at 100% impermeable area and assume to have no drainage, in a surface water model, to show if this creates its own flood risk.
- The current outline drainage strategy for the surface water runoff from the proposed development (Technical Note dated 31 May 2024), identifies the surface water flow

path but does not include the risk of flooding into the drainage strategy for the development of the site. The SuDS discharge hierarchy must be explored fully, and an evidenced sustainable drainage solution provided. Shallow infiltration must be explored first over proposed deep infiltration systems. An assessment of ground stability and potential subsidence may also need to be required, although the Local Planning Authority would need to have a specific professional to assess any potential solution features and subsidence (the LLFA cannot technically assess this issue). Any deep infiltration boreholes must be assessed to make sure they will not create an artificial spring line further downgradient in the site.

Figure 1: Overlay of the development preliminary surface water drainage strategy (May 2024) and the long term risk from surface water flooding (Environment Agency).

We are aware that the site to the west of this one is yet to be completed but has
planning permission to manage the surface water flow path through the site and
exiting onto this application site boundary at the same location as shown on the
Environment Agency Surface Water Flood Risk Map. It should be noted that the 0.1%
AEP flood outline is a proxy for the 1% plus 40% climate change flood outline until
site specific modelling is provided. All development must be removed from the areas
at risk of flooding and safe access and egress provided at all design flood events, to
show how the development will be safe for its lifetime. This may include assessment
of how proposals will not increase the number of people living and working in areas of

flood risk and if there is any additional burden placed on the emergency services (see <u>www.adeptnet.org.uk</u> for guidance on development, flood risk and the emergency services).

- The development access roads will need to be located outside any flood extent and where this is not possible, it will need to be demonstrated in accordance with the flood risk assessment guidance for new developments and the hazard calculations in FD2320. (NPPF PPG Paragraph 005). If roads or footways are crossing or located with the flow paths or crossing watercourses, it will need to be demonstrated that these will not increase food risk to the site itself or the surrounding area through the loss of flood storage or through causing a blockage to the flow of surface water across the site or within the channel.
- The drainage strategy and the type / location of SuDS should be considered at an early stage of the planning process and included in any urban spatial typologies that may be developed (e.g., inclusion of enhanced tree pits). The drainage system is expected to comply with the four pillars of sustainable urban drainage systems (SuDS) of Water Quality, Water Quantity, Amenity and Biodiversity.
- We understand that infiltration testing has been undertaken in 2018 and the results are variable across the site. Whilst one location has been proven to infiltrate well (SK106), the use of one trial pit result to BRE365 standard must be expanded to locations needed for infiltration structures (at the proposed location and depth of the structures).
- If the intention is to manage all surface water flow paths within the site drainage infrastructure, then modelling of the proposed drainage network must be sized accordingly to accept the volume of water from the whole offsite catchment (even at an outline planning stage). If the flow paths are to be managed separately, then evidence must be provided to show how it will be avoided in the first instance and development kept out of these areas. Development must be shown to be safe for its lifetime.
- The site is in the Environment Agency Source Protection Zones III, Total Catchment. The regulations of the Source Protection Zone (SPZ III) is required to be considered in the proposed drainage for the site and additional treatment steps be implemented where necessary (refer to the EA guidance if required). This would include how unknown pollution potential from off-site runoff may need to be treated. Accepting runoff generated offsite may affect the adopting bodies of the SuDS. This should be explored at an early stage.
- We would expect that investigation into infiltration to be undertaken in accordance with the BRE 365 methods (or equivalent) as not all the previous tests were undertaken to this standard. The worst infiltration rate calculated must be used in all drainage supporting calculations. Groundwater monitoring will be required to demonstrate the seasonally high groundwater level in the area and at least 1m of unsaturated zone be provided to the base of the infiltration structure.
- If infiltration is not favourable or there is high groundwater levels, the submitted surface water drainage discharge should not exceed the predevelopment greenfield

QBAR rate for all storms (or provide a complex control with long term storage). It should be noted that we do not see another possible discharge location as there are no ordinary watercourses or surface water sewers downgradient of this site. Source control SuDS must be included in any drainage design to limit the reliance on regional attenuation / infiltration basins.

- A detailed surface water drainage assessment should be carried out to demonstrate that the proposed development will not create an increased risk of flooding from surface water to the development site and surrounding area for the critical storm up to and including the 1% AEP plus climate change event. This should be done in accordance with the national Planning Policy Framework (NPPF) and Planning Policy Guidelines (PPG) along with the Hertfordshire LLFA guidance.
- 1% AEP rainfall events plus climate change shall not leave the application boundary or flood any part of a building, utility plant susceptible to water within the development boundary.
- 3.33 % AEP rainfall event plus climate change shall not flood outside the drainage network which is designed to hold water.
- FEH rainfall data should be used in calculations and CV values of 1 should be applied. Urban creep should be applied to storage volume calculations where applicable.
- The site is located within the Upper and Bedford Ouse Management Catchments Environment Agency Climate Change Allowances) and therefore the Peak rainfall allowances that should be used for the 1 in 30 (3.33%) and the 1 in 100(1% AEP) are 35% and 40% retrospectively.
- Exceedance flow paths need to be submitted as part of the application and these should take into consideration the layout of the development and any ground levels to ensure these events are safely managed and minimise impacts for flooding.
- It appears that this large site will be phased, it should be made clear how phasing would work alongside any drainage strategy, i.e. each phase must be able to connect to the drainage outfall and each parcel have its own drainage layout / strategy that can be completed independently from each other. The proposal must include source control rather than propose a single regional sized attenuation structure. Temporary flow controls may be required alongside other temporary measures during the duration of the build out. A temporary drainage strategy should be included in any masterplan of the site.
- The school site may not be developed by the same team as the rest of the site. Allowance must be made for the school site to connect to the wider drainage network and have a positive drainage outfall from the site if infiltration is not proven to be possible within the school outline boundary. The school site must also be shown that above ground SuDS can be incorporated but still provide essential educational needs e.g. play space. Source control and multifunction SuDS such as permeable surfaces may need to be included.
- We would highlight that the greenfield runoff rates that have been provided rely on a user defined BFI value. As the area is likely to be groundwater dominated, we would

request how this value (0.6) has been derived. QBAR of 1.7I/s/ha may need to be reduced down as far as 1/I/s/ha in line with the SUDS Manual guidance.

 Management and Maintenance easements should be included on all SuDS features – an overview of the land take required to provide maintenance access should be considered at an outline stage (e.g. maintenance strips around ponds).

Informative

For further advice on what we expect to be contained within the FRA to support an planning application, please refer to our information and checklists on our website <u>https://www.hertfordshire.gov.uk/services/recycling-waste-and-environment/water/surface-water-drainage/surface-water-drainage.aspx</u> This link also includes HCC's policies on SuDS in Hertfordshire.

The summary above contains a note of the issues discussed at the pre app / urban design meeting with the LPA / LLFA and applicant on the 20 August 2024. If there is further information or meetings required please contact the Flood Risk Management Team. We would welcome the LPA's suggestion of including SuDS land requirements, for e.g. swales along roads, on parameter plans.

This pre application advice will only be valid for 12 months or unless there is a major update of policy, guidance or technical standards during that time.

Yours sincerely,

Elaine

Elaine Simpson

SuDS and Watercourses Support Officer Growth and Environment

Annex

The following documents have been reviewed, which have been submitted to support the application;

- Technical Note Preliminary Surface Water Drainage Strategy for the proposed development at Land North of St Albans, Harpenden Road, prepared by PJA, 31 May 2024, REF 05920-P0-SF-AC version P0.
- Drawing: Local Centre Location Options including the preferred option
- Document: Woollam Park Spatial Typologies
- Drawing: Placemaking Plan dated 15 August 2024 (by Define reference: DE-565_029)
- Drawing: Tree Hedgerow Plan dated 15 August 2024 (by Define reference: DE-565_L_400)
- Drawing: Landscape Framework and Illustrative Site Sections (By Define reference: DE_565_NSA_L_100 to 104.

Dear Charlotte,

Enquiry regarding: [PJA: 05920] - Groundwater Source Protection Zone and Aquifer Information

Thank you for your enquiry which was received on 23 May 2024.

We respond to requests for information that we hold under the Freedom of Information Act 2000 (FOIA) and Environmental Information Regulations 2004 (EIR).

Please find below our technical teams response:

You have correctly identified that the site is located within groundwater source protection zone 3 (SPZ3) and that it is underlain by the Chalk Principal Aquifer. SPZ3, also referred to as "total catchment" is the area around abstraction points where it is presumed that infiltrated water will ultimately end up at the abstraction. More information about source protection zones can be found:

Groundwater source protection zones (SPZs) - GOV.UK (www.gov.uk)

The SPZ are periodically updated and the current SPZ mapping can be found on the DEFRA Magic website:

Magic Map Application (defra.gov.uk)

The SPZ mapping and drinking water safeguard zones can be found under: Designations -> land-based designations -> non-statutory

With respect to the infiltration of surface water at this location. We note that no details regarding the development or the site history have been provided, the soil horizon where the infiltration tests were conducted, or what form of infiltration the applicant had in mind so, we can only provide general guidance. But assuming that the surface water is predominantly rainfall draining from roofs and areas of hardstanding, and that the site does not have a history of contaminative land use, we would not object to proposals for surface water infiltration at this location assuming the following:

- Infiltration sustainable drainage systems (SuDS) are suitably designed.
- Infiltration SuDS meet the Governments non-statutory technical guidance for SuDS <u>Sustainable Drainage Systems: Non-statutory technical standards for</u> <u>sustainable drainage systems (publishing.service.gov.uk)</u>. The CIRIA SuDS manual is (C753) is also a useful resource and is available <u>Item Detail (ciria.org)</u>
- The surface water drainage scheme incorporates a SuDS management treatment train that is, use drainage components in series to achieve a robust surface water management system that does not pose an unacceptable risk of pollution to groundwater
- The surface water is from areas where no potentially contaminative activities have occurred and is free from hazardous substances as per the current JAGDAG list

of confirmed hazardous substances to groundwater (<u>2018 01 31 Confirmed</u> <u>hazardous substances list_0.pdf (wfduk.org</u>)). Please note that surface water discharges from heavily trafficked areas and areas where vehicles are stored may contain hazardous substances and the expectation is that the SuDS scheme for the site will incorporate pollution control features that would prevent hazardous contaminants entering the infiltration point (see bullet point above).

• The discharge point cannot be direct to groundwater (i.e. via a borehole that penetrates to water table). The applicant will need to provide confidence that the infiltration point has been designed to be as shallow as possible to retain the beneficial filtration effects of soils in the unsaturated zone above the permanent water table.

Given that the above can be satisfied we do not feel that an environmental permit for infiltration of surface water would be required at this location.

We do note that the geological mapping for the area (available <u>GeoIndex - British</u> <u>Geological Survey (bgs.ac.uk)</u>) indicates the potential for "clay with flints" beneath the site that may prevent the use of some forms of infiltration drainage. Please note our final bullet point above – if a borehole soakaway is to be proposed it cannot penetrate the water table and the applicant must ensure that infiltration point is as shallow as possible and that pollution at the water table cannot occur.

Please refer to the <u>Open Government Licence</u> which explains the permitted use of this information.

Most of our data is being made available to the public via the <u>Defra Data Services</u> <u>Platform</u>. You will need to register to obtain access.

If you are not satisfied you can contact us within 2 calendar months to ask for our decision to be reviewed.

If you require any further assistance please contact me. Kind regards

James Hammett Customers and Engagement Officer Direct dial 0203 0259058 / 9210 Mobile 07769 365347 Direct email <u>HNLenguiries@environment-agency.gov.uk</u>

Address: Environment Agency, Hertfordshire and North London Alchemy, Bessemer Road, Welwyn Garden City, Hertfordshire, AL7 1HE

Pronouns: he/him/his (why is this here?)

Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else. We have checked this email and its attachments for viruses. But you should still check any attachment before opening it. We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes.

From:	NET Enquiries
То:	Charlotte Turner
Subject:	HNL343550/AS - [PJA: 05920] - St Albans Product 4 Request TL 15256 09761
Date:	24 January 2024 13:27:21
Attachments:	image014.png
	image016.png
	image017.png
	image018.png
	image019.png

Dear Charlotte

Thank you for your enquiry which was received on 16 January 2024.

Please note that this information is already freely available online at the links below.

The information on Flood Zones in the area relating to site in St Albans at NGR 515256,209761 is as follows:

The property is in an area located within Flood Zone 1 shown on our Flood Map for Planning (Rivers and Sea).

Note - This information relates to the area that the above named site is in and is not specific to the property/proposed development itself.

Because this site does not fall within an area at risk of flooding from rivers or the sea, we do not hold any detailed flood modelling data that would impact your site. As such we are unable to provide a flood risk product.

This address is within an area at High risk of surface water flooding.

Following the Flood and Water Management Act 2010, Lead Local Flood Authorities are responsible for the management of groundwater and surface water flooding. They also maintain a register of property flooding incidents. You may want to seek further advice from the Lead Local Flood Authority Hertfordshire County Council, who may have further information.

If you have requested this information to help inform a development proposal, then you should note the information on GOV.UK on the use of Environment Agency Information for Flood Risk Assessments

https://www.gov.uk/planning-applications-assessing-flood-risk https://www.gov.uk/government/publications/pre-planning-application-enquiry-formpreliminary-opinion

You can also view and print surface water flood maps online at: http://watermaps.environment-agency.gov.uk/wiyby/wiyby.aspx? topic=ufmfsw#x=357683&y=355134&scale=2

Here is the link to the climate change allowances: https://www.gov.uk/government/publications/peak-river-flow-climate-changeallowances-by-management-catchment

This information is provided subject to the Open Government Licence, which you

should read.

We respond to requests for recorded information that we hold under the Freedom of Information Act 2000 (FOIA) and the associated Environmental Information Regulations 2004 (EIR).

Data Available Online

Many of our flood datasets are available online:

- You can view and download flood risk maps from our website at: http://watermaps.environment-agency.gov.uk/wiyby/wiyby.aspx? topic=floodmap#x=357683&y=355134&scale=2
- Flood Map For Planning (Flood Zone 2, Flood Zone 3, Flood Storage Areas, Flood Defences, Areas Benefiting from Defences)
- Here is the link to the climate change allowances:
 https://www.gov.uk/government/publications/peak-river-flow-climate-change-allowances-by-management-catchment
- Risk of Flooding from Rivers and Sea
- Historic Flood Map
- Assets and Defences
- <u>Current Flood Warnings</u>
- Open data
- Groundwater data <u>Hydrology Data Explorer</u>
- Reservoir flood risk <u>Reservoir flood maps: when and how to use them -</u> <u>GOV.UK (www.gov.uk)</u>
- Details of aquifers are online <u>https://data.gov.uk/search?</u> <u>q=aquifer&filters%5Bpublisher%5D=Environment+Agency&filters%5Btopic%5</u> <u>D=&filters%5Bformat%5D=&sort=best</u>

Please use the following link for details of reports for known problems regarding groundwater flooding issues

<u>https://www.gov.uk/government/collections/groundwater-current-status-and-flood-risk</u> If there is not one for your site then we have no reports of any problems there in our records.

Groundwater level data can be found as open data here: <u>https://data.gov.uk/search?</u> <u>q=groundwater+levels</u>_alternatively a public database is available from <u>https://www.bgs.ac.uk/information-hub/borehole-records/</u>

I hope that we have correctly interpreted your request. If you are not satisfied with our response to your request for information you can contact us within 2 calendar months to ask for our decision to be reviewed.

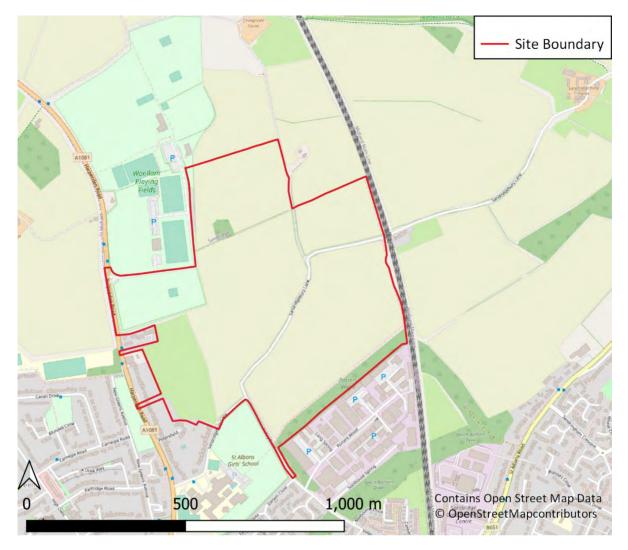
We respond to requests for recorded information that we hold under the Freedom of Information Act 2000 and the associated Environmental Information Regulations 2004.

This information is provided subject to the <u>Open Government Licence</u>, which you should read.

Please get in touch if you have any further queries or contact us within two months if you'd like us to review the information we have sent.

Yours sincerely

Annette Smith **Customers and Engagement Officer Environment Agency, Hertfordshire and North London Alchemy, Bessemer Road, Welwyn Garden City, Hertfordshire, AL7 1HE** Direct dial 0203 0258975 Direct email <u>HNLenguiries@environment-agency.gov.uk</u>


My usual working hours are 8.30am to 3pm, Mondays to Wednesdays

From: Charlotte Turner <<u>Charlotte.turner@pja.co.uk</u>>
Sent: 16 January 2024 09:14
To: Enquiries, Unit <<u>enquiries@environment-agency.gov.uk</u>>
Cc: Samantha Furey <<u>samantha.furey@pja.co.uk</u>>
Subject: 240117/AG07 [PJA: 05920] - St Albans Product 4 Request TL 15256 09761

Hello,

PJA have been appointed to provide flood risk and drainage advice for a proposed development at St Albans. OS Co-ordinates: 515256, 209761. A Site Location Plan is available below:

We are aware that the Site is situated within Flood Zone 1 after a review of the Flood Map for Planning.

As such, we would be grateful if you could provide Product 4 data that is associated with this.

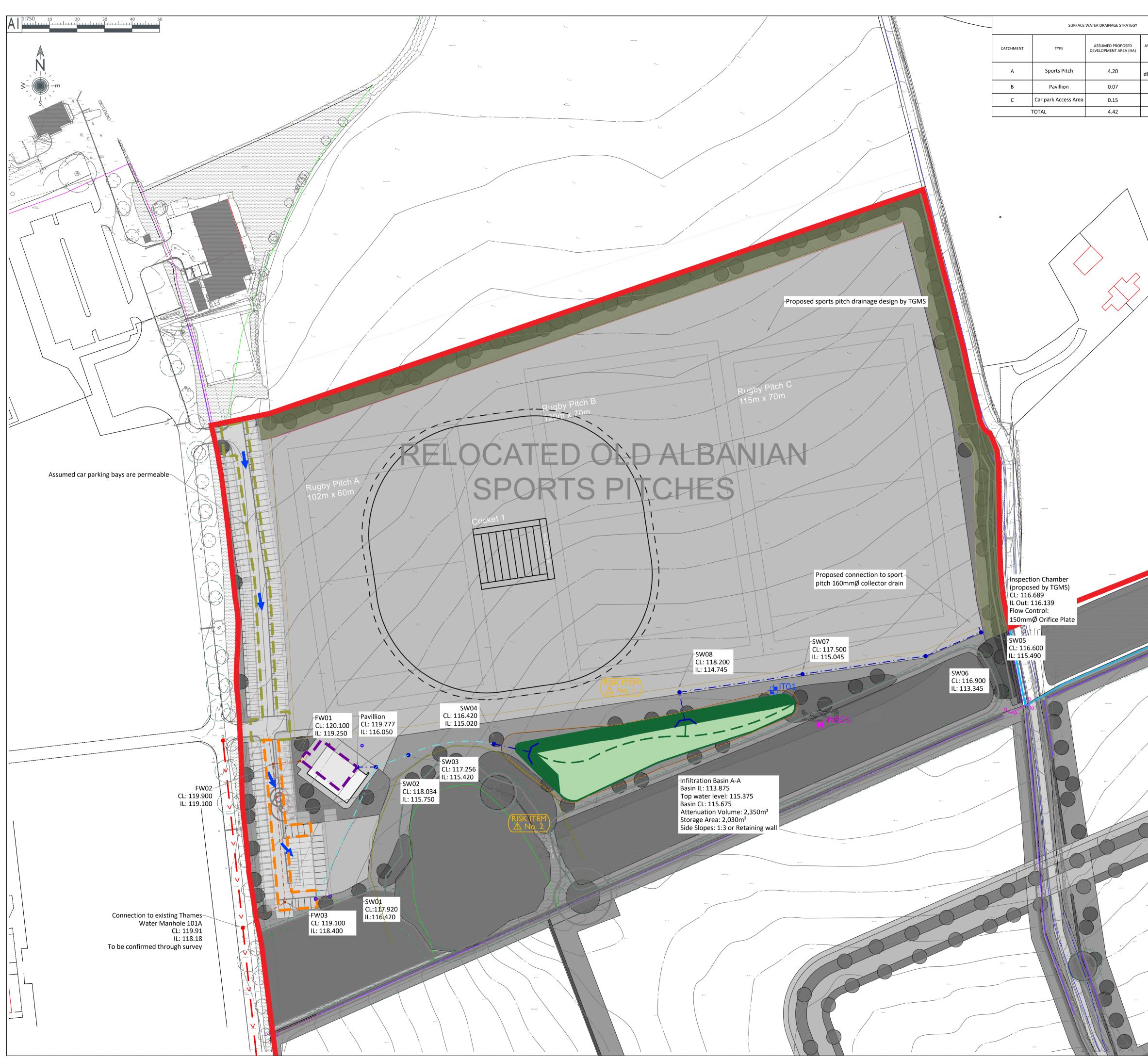
In addition, we would be grateful for any data you hold on flood defences, surface water, ground water or reservoir flood risk within the vicinity of the Site.

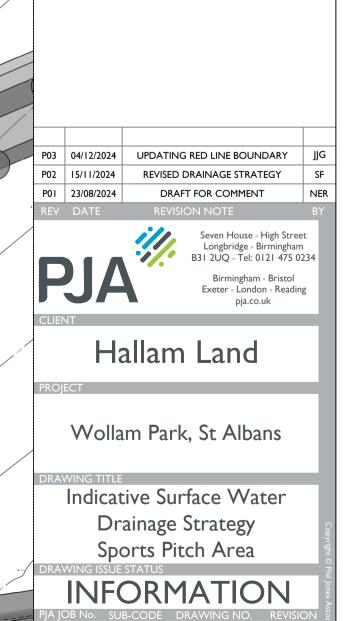
Furthermore, we would be grateful if you could provide any information or comments in relation to the Principal Aquifer situated within the vicinity of the Site.

We would welcome any additional thoughts or comments you may have in relation to this.

Kind regards,

Charlotte Turner


Charlotte Turner Flood Risk & Drainage Engineer T. 0121 387 7923 Park Point, High Street, Longbridge, Birmingham, B31 2UQ, UK www.pja.co.uk


Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else. We have checked this email and its attachments for viruses. But you should still check any attachment before opening it. We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes.

Appendix F Drainage Strategy Drawings

		NOTES
	KEY:	These drawings have been produced with reference to the
	Site Boundary	CDM Regulations 2015. Please note that these are
IMED PROPOSED IMPERMEABLE AREA (ha)	Catchment A	pre-construction phase drawings and should be subject to further design risk management as required in accordance
		with Regulation 9
nited to designed pipe	— — — — Catchment B	1. This Drawing is not to be reproduced in any part or
neter maximum of 18 l/s	— — — — Catchment C	form without the consent of PJA Civil Engineering Ltd. All copyright reserved.
0.07	Indicative Location of Attenuation	2. No assessment of earthworks has been undertaken at
0.15	Basin & indicative Earthworks Buffer	this stage.3. No utilities, ecological and arbor-cultural
0.22	(1:3 Side Slopes and retaining)	consideration.
0.22	Indicative Location of Low	 Drawing should be read in conjunction with all other relevant scheme drawings.
	Flow Channel	5. Drawing Includes:
	Indicative Location of Proposed	5.1. Masterplan provided by Define in December 2024 (Drawing No: DE-565-102).
	Surface Water Sewer and Manhole	5.2. Contour lines (0.5m) taken from Topographic
	Infiltration Test location	Survey (not formally issued) 5.3. Contour lines (1m) produced using 1m DTM
		LiDAR from the Environment Agency April 2022.
	🢓 Window Sample location	 5.4. OS Mapping (not formally issued) 5.5. An infiltration rate of 2.63x10⁻⁵m/s from location
		IT01 was used from the 2024 Geo Environmental
	Proposed headwall	Group Infiltration testing and ground water monitoring report.
	Indicative Location of Proposed	6. Surface Water Drainage Strategy based on:
	Surface Water Filter Drain	6.1. Attenuation Basin is 1.8m deep.6.2. Attenuation features to have a minimum 300mm
	Root protection zone	freeboard. 6.3. Volume within conveyance features has not beer
	\sim	6.3. Volume within conveyance features has not beer included within attenuation calculations at this
	1m buffer from Root protection zone	stage. 6.4. Drainage for sports pitches designed by others.
\ \	\bigcirc	6.5. Maximum capacity within collector drain
\backslash	15m Ecology buffer for Badger Sett	determined as 18l/s discharging into attenuation pond.
		6.6. Assumed 100% impermeable for car park access
	Existing Thames Water Foul Water	areas and Pavillion 6.7. Assumed permeable surfacing for car park bays,
	Sewer	to be made from material such as gravel or
		grasscrete. 6.8. FEH-22 Rainfall Data used with CV 1.0 for
		Summer and Winter.
		 Woolams Playing field Proposed levels drawings [Ref:TGMS1284.4-1] provided by specialist consultant
		TGMS. Received 11th July 2024.
		 Tree Survey Plan [Ref:8575-T-01 Tree Survey Plan.pdf and subsequent Root Protection zone (RPZ)
		indicatively shown on plan received from Hallam Lanc
		on 22nd January 2024.
		(RISK ITEM)
		No.
		Risk Item 1: No allowance for additional inflow from sports
		pitch to enter proposed drainage network into the attenuation feature has been given.
		Risk Item 2: Proposed location of attenuation feature is in
		Risk Item 2: Proposed location of attenuation feature is in close proximity to existing Root Protection Zones (RPZ) and
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to
		close proximity to existing Root Protection Zones (RPZ) and
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of
		close proximity to existing Root Protection Zones (RPZ) and Ecology Buffer zone. The basin dimensions required to attenuate surface water are based on the accuracy of

05920 - A - 0503 - PO3 Revision Letter : P - Prelim / A - Approval / T - Tender / C - Construction

GD

AUG 2024

SCALE DRAWN R

AI@750 NER

ed	
able	Indicative
Iding	Attenuation
ban	Volume [m3]
ha]	
72.0	1,785
	1,220
1-6	3,990
< 1)	4,825
	1,835
	3,770
	3,375
	2,360
	1,920
	25,080

		_	
	/	_	~
/	/		_
/	-	_	
/			

		1
KEY:		NOTES
	Site Boundary	These drawings CDM Regulation
	Catchment A	pre-construction
		further design ri with Regulation 9
	Catchment B	1 This Drews
	Catchment C	1. This Drawi form with
	Catchment D	All copyrig 2. No assessr
	Catchment E	this stage.
	Catchment F	3. No assessr undertake 4. No utilities
	Catchment G	undertake 5. Drawing sł
	Catchment H	relevant so
	Catchment I	6. Drawing Ir 6.1. Strate
	Catchment J	Decer Hallar
	Catchment K	6.2. Topog Surve
	Catchment L	6.3. Tree 5 2023
		6.4. An inf
	Indicative Location of Attenuation Basin with	IT04 v Group
Jun)	3m maintenance strip	7. Indicative
	Indicative Location of	7.1. Atten slope
	Infiltration Basin with 3m	7.2. Atten
	maintenance strip	with 1 freeb
	Location of Infiltration	freeb 7.3. Atten
	Testing Location IT04	with
	Indicative Location of Low	is 1m propo
	Flow Channel	slope
	Indicative Location of	7.4. Atten
>	Conveyance Feature	to fac with 1
	Indicative Location of	platfo
	Headwall	1m in 7.5. Atten
	Indicative Location of Railway	to fac
	Line	with 1
	Indiantics Francisc of 24m	the ba depth
	Indicative Easement of 21m from the Railway Line (TBC)	7.6. Volun
		incluc this st
> gant > gant > gant > gant > gant > ga	Indicative Location of Proposed Surface Water Sewer	7.7. Discha
	Surface water Sewer	1.88x
	Indicative Surface Water Flow Route	Enviro 7.8. FEH 2
	Indicative Location of Proposed Foul	7.9. Cv Va
	Water Pumping Station with	8. Impermea 8.1. 60% i
	and Storage Compound	with a
	Indicative Location of Proposed Surface	8.2. 100%
	Water Flow Routing Channel (0.5m deep	8.3. 100% 8.4. 50% f
	with 1:3 side slopes - 3.5m wide)	8.5. 80% f
	Indicative Location of Proposed Surface	8.6. 90% f
	Water Swale (1.0m deep, 0.5m base width with 1:4 side slopes)	9. Further co ecological
	width with 1.4 side slopes	detailed d
•	Indicative Location of Proposed Orifice	10. Indicative masterpla
-	Plate	impermea
0	Indicative Location of Proposed Flow	drainage s
	Control	11. Further gro rates, seas
		underlying
		1

	ES
These dra	awings have been produced with reference to the
	egulations 2015. Please note that these are
	truction phase drawings and should be subject to
	lesign risk management as required in accordance
with Regi	
with Kegt	
	is Drawing is not to be reproduced in any part or
for	rm without the consent of PJA Civil Engineering Ltd.
	copyright reserved.
2. No	assessment of earthworks has been undertaken at
	s stage.
	assessment of surcharged outfall has been
	dertaken at this stage.
	utilities and arbor-cultural consideration has been
	dertaken at this stage.
	awing should be read in conjunction with all other
	evant scheme drawings.
6. Dra	awing Includes:
6.1.	Strategic Landscaping Plan provided by Define in
	December 2024 (Drawing No: DE_565_102
	Hallam St Albans Landscape Framework Plan).
6.2.	Topographic Survey produced by Interlock
	Surveys dated September 2023 (Ref. 190296)
6.3.	Tree Survey provided by FPCR dated December
0.5.	2023 (8575-T-01)
6.4.	An infiltration rate of 1.88x10 ⁻⁵ m/s from location
	IT04 was used from the 2024 Geo Environmental
	Group Infiltration Testing.
	licative Surface Water Drainage Strategy based on:
7.1.	Attenuation Basin A is 1.3m deep with 1:4 side
	slopes (including 300mm freeboard)
7.2.	Attenuation Basins B3, C, and E are 1.5m deep
	with 1:4 side slopes (including 300mm
	freeboard).
7.3.	Attenuation Basins FIGJ, H, and K are 2.3m deep
	with platform to facilitate planting. Staged basin
	is 1m deep with 1:3 side slopes. From the
	proposed platform, the basin utilises 1:5 side
	slopes and is 1.3m in depth.
7.4.	Attenuation Basin L is 1.8m deep with platform
7.4.	
	to facilitate planting. Staged basin is 0.8m deep
	with 1:3 side slopes. From the proposed
	platform, the basin utilises 1:5 side slopes and is
	1m in depth.
7.5.	Attenuation Basin D is 2.2m deep with platform
	to facilitate planting. Staged basin is 1.2m deep
	with 1:4 side slopes.From the proposed platform,
	the basin utilises 1:5 side slopes and is 1m in
	depth.
7.6.	Volume within conveyance features has not been
	included within the attenuation calculations at
	this stage.
7.7.	Discharge limited to an infiltration rate of
	1.88×10^{-5} m/s in accordance with the Geo
	Environmental Group Infiltration Testing.
7.8.	FEH 22 Data.
7.9.	Cv Values of 1.
	permeable Area Assumptions:
8.1.	60% impermeable for all residential development
0.1.	with an additional 10% for urban creep.
8.2.	100% impermeable for all highways.
8.3.	
8.3.	100% impermeable for all attenuation basins.
	50% for all educational facilities.
8.5.	80% for mixed used development
8.6.	90% for commercial development.
	rther consideration of utilities, arboricultural and
	ological constraints should be undertaken prior to
	tailed design.
	licative surface water drainage design based on
	asterplanning at the time of production and
	permeable areas may result in changes to the
	ainage strategy.
	rther ground investigation to confirm infiltration
	es, seasonal groundwater levels and detail of the
un	derlying chalk solubility is required.
RISK ITEN	/IS:

RISK ITEMS:

Risk Item 1: Indicative Surface Water Drainage Strategy is subject to proposed development hydraulic modelling to refine surface water flood extents across the Site.

Risk Item 2: Indicative Surface Water Drainage Strategy is subject to a detailed earthworks and levels assessment.

Hallam Land Management Limited and St Albans School
PROIECT

Woollam Park, St Albans

DRAWING TI	TLE		
	Surface	e Water	
[Drainage	e Strategy	Y
DRAWING IS			
	PLAN	ININC	-
PJA JOB No.	SUB-CODE	DRAWING NO	
05920	- WR -	0525	- P09
		proval / T - Tender /	C - Construction
BIM DRAWIN	G REFERENCE		
SCALE	DRAWN	REVIEWED	DATE
AI@2,000	СТ	GD	APR 2022

KEY:

-----> ---- Existing Severn Trent Water Foul Water Sewer

Site Boundary

Indicative Easement of 21m from the Railway Line (TBC)

Indicative Foul Water Flow Route

—/ —/ —/ — Indicative Route of Proposed Foul Water Rising Main

Indicative Location of Proposed Foul Water Pumping Station with 20m Cordon Sanitaire and Storage Compound

NOTES

These drawings have been produced with reference to the CDM Regulations 2015. Please note that these are pre-construction phase drawings and should be subject to further design risk management as required in accordance with Regulation 9

- This Drawing is not to be reproduced in any part or form without the consent of PJA Civil Engineering Ltd. All copyright reserved.
 No assessment of earthworks has been undertaken at
- this stage.
 No assessment of surcharged outfall has been undertaken at this stage.
- 4. No utilities and arbor-cultural consideration has been
- Ito attricts and abor cardina consideration has been undertaken at this stage.
 Drawing should be read in conjunction with all other relevant scheme drawings. 6. Drawing Includes:

- Drawing Includes:

 Landscaping Plan provided by Define in December 2024 (Drawing No: DE_565_102).
 Topographic Survey produced by Interlock Surveys dated September 2023 (Ref. 190296)
 Tree Survey provided by FPCR dated December 2023 (8575-T-01)

 Foul Water Drainage Strategy is indicative and subject to agreement with Thames Water.
 Exact details of pumping station to be confirmed at the detailed design stage, including the depth of the
- Exact details of pumping station to be confirmed at the detailed design stage, including the depth of the wet well. Access to pumping station to be achieved by adoptable highway.
 Foul Water Drainage Strategy based on information available at the time of writing and is subject to masterplanning information and Thames Water Correspondence
- Correspondence.

RISK ITEMS:

Risk Item 1: A gravity-led solution is proposed to the foul water pumping station situated to the south west of the Site. Foul water will then be pumped to the existing Thames Water foul water sewer, situated along Harpenden Road at Manhole 8702 in accordance with pre-development enquiry guidance (ref. DS6111499 - October 2024). It should be noted that modelling work will need to be undertaken by Thames Water to ensure there is enough capacity within the existing network.

PI 04/12/2024 REVISED RED LINE BOUNDARY JJG P0 08/10/2024 DRAFT FOR COMMENT Seven House - High Street Longbridge - Birmingham B31 2UQ - Tel: 0121 475 0234 Birmingham - Bristol Exeter - London - Reading pja.co.uk

СТ

Hallam Land Management Limited and St Albans School

Woollam Park, St Albans Indicative Foul Water

Drainage Strategy DRAFT PJA JOB No. SUB-CODE DRAWING NO. REVISIO 05920 - WR - 0526 - POI Revision Letter : P - Prelim / A - Approval / T - Tender / C - Constr BIM DRAWING REFERENCE SCALE DRAWN REVIEWED DATE AI@2,000 CT GD OCT 2024

Appendix G Surface Water Drainage Calculations

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	2	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	50.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Easting (m)	Northing (m)	Depth (m)
Catchment D	2.540	5.00	104.010	98.253	80.022	2.200
Catchment A	2.840	5.00	117.250	13.925	56.994	1.300
Catchment B3	0.785	5.00	111.000	58.332	72.719	1.500
Catchment E	0.660	5.00	107.500	77.143	83.971	1.500
Catchment C	2.780	5.00	106.500	88.721	82.792	1.500
Catchments F, I, G and J	7.450	5.00	108.525	57.010	39.556	2.300
Catchment H	1.410	5.00	108.000	69.595	51.442	2.300
Catchment k	1.970	5.00	107.000	80.954	63.623	2.300
Catchment L	0.750	5.00	106.025	96.320	64.984	1.800
1	0.000	5.00	103.000	105.085	80.027	2.500
Swale 1A	0.000	5.00	116.500	24.494	59.275	1.000
Swale 1.1			115.575	31.329	60.532	1.000
Swale 1.2			114.650	38.399	61.973	1.000
Swale 2	0.785	5.00	113.575	45.634	63.546	1.000
Swale 2.1			112.650	49.186	65.155	1.000
Swale 2.2			111.725	53.172	67.234	1.000

<u>Links</u>

Na	me	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.0	007	Catchment B3	Catchment E	75.000	0.600	109.500	106.000	3.500	21.4	900	7.31	43.8
1.	008	Catchment E	Catchment C	30.000	0.600	106.000	105.000	1.000	30.0	900	7.40	43.6
1.	009	Catchment C	Catchment D	25.000	0.600	105.000	101.810	3.190	7.8	900	7.44	43.5
2.0	000	Catchments F, I, G and J	Catchment H	25.000	0.600	106.225	105.700	0.525	47.6	750	5.10	50.0
2.0	003	Catchment L	Catchment D	30.000	0.600	104.250	101.810	2.440	12.3	750	5.37	50.0
1.0	010	Catchment D	1	10.000	0.600	101.810	100.500	1.310	7.6	1725	7.45	43.5
2.	001	Catchment H	Catchment k	25.000	0.600	105.750	104.700	1.050	23.8	750	5.18	50.0
2.	002	Catchment k	Catchment L	30.000	0.600	104.750	104.225	0.525	57.1	750	5.31	50.0
2.	JU2	Catchment k	Catchment L	30.000	0.600	104.750	104.225	0.525	57.1	/50	5.31	50

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)
1.007	6.783	4315.4	698.8	0.600	0.600	4.410	0.0
1.008	5.731	3645.9	798.7	0.600	0.600	5.070	0.0
1.009	11.225	7141.3	1233.6	0.600	1.300	7.850	0.0
2.000	4.061	1794.0	1346.2	1.550	1.550	7.450	0.0
2.003	8.004	3536.3	2092.5	1.025	1.450	11.580	0.0
1.010	16.942	39593.4	3450.1	0.475	0.775	21.970	0.0
2.001	5.748	2539.5	1601.0	1.500	1.550	8.860	0.0
2.002	3.706	1637.2	1957.0	1.500	1.050	10.830	0.0

		PJA Civi	l Engineer	ing Limited		920-WR-05		Surf; P	age 2				
CAL	JSEVAY					Network: Storm Network							
						te Turner							
						2024							
Links													
Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain		
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)		
1.000	Catchment A	Swale 1A	36.000	0.600	115.950	115.500	0.450	80.0	450	5.26	50.0		
1.001	Swale 1A	Swale 1.1	37.000	0.035	115.500	114.575	0.925	40.0	500	5.48	50.0		
1.002	Swale 1.1	Swale 1.2	37.000	0.035	114.575	113.650	0.925	40.0	500	5.69	49.3		
1.003	Swale 1.2	Swale 2	43.000	0.035	113.650	112.575	1.075	40.0	450	6.37	46.9		
1.004	Swale 2	Swale 2.1	37.000	0.035	112.575	111.650	0.925	40.0	500	6.58	46.2		
1.005	Swale 2.1	Swale 2.2	37.000	0.035	111.650	110.725	0.925	40.0	500	6.79	45.5		
1.006	Swale 2.2	Catchment B3	35.000	0.035	110.725	109.500	1.225	28.6	750	7.13	43.0		
		Name N	/el C	ap Flow	US	DS	Σ Area	Σ Add					

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow
				(m)	(m)		(I/s)
1.000	2.274	361.7	513.2	0.850	0.550	2.840	0.0
1.001	2.901	13053.0	513.2	0.000	0.000	2.840	0.0
1.002	2.901	13053.0	506.4	0.000	0.000	2.840	0.0
1.003	1.053	167.4	481.4	0.550	0.550	2.840	0.0
1.004	2.901	13053.0	605.0	0.000	0.000	3.625	0.0
1.005	2.901	13053.0	595.6	0.000	0.000	3.625	0.0
1.006	1.751	773.6	563.3	0.250	0.750	3.625	0.0

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.007	75.000	21.4	900	Circular	111.000	109.500	0.600	107.500	106.000	0.600
1.008	30.000	30.0	900	Circular	107.500	106.000	0.600	106.500	105.000	0.600
1.009	25.000	7.8	900	Circular	106.500	105.000	0.600	104.010	101.810	1.300
2.000	25.000	47.6	750	Circular	108.525	106.225	1.550	108.000	105.700	1.550
2.003	30.000	12.3	750	Circular	106.025	104.250	1.025	104.010	101.810	1.450
1.010	10.000	7.6	1725	Circular	104.010	101.810	0.475	103.000	100.500	0.775
2.001	25.000	23.8	750	Circular	108.000	105.750	1.500	107.000	104.700	1.550
2.002	30.000	57.1	750	Circular	107.000	104.750	1.500	106.025	104.225	1.050
1.000	36.000	80.0	450	Circular	117.250	115.950	0.850	116.500	115.500	0.550
1.001	37.000	40.0	500	Swale	116.500	115.500	0.000	115.575	114.575	0.000
1.002	37.000	40.0	500	Swale	115.575	114.575	0.000	114.650	113.650	0.000
1.003	43.000	40.0	450	Circular	114.650	113.650	0.550	113.575	112.575	0.550
1.004	37.000	40.0	500	Swale	113.575	112.575	0.000	112.650	111.650	0.000

Link	US	Node	MH	DS	Node	МН
	Node	Туре	Туре	Node	Туре	Туре
1.007	Catchment B3	Junction		Catchment E	Junction	
1.008	Catchment E	Junction		Catchment C	Junction	
1.009	Catchment C	Junction		Catchment D	Junction	
2.000	Catchments F, I, G and J	Junction		Catchment H	Junction	
2.003	Catchment L	Junction		Catchment D	Junction	
1.010	Catchment D	Junction		1	Junction	
2.001	Catchment H	Junction		Catchment k	Junction	
2.002	Catchment k	Junction		Catchment L	Junction	
1.000	Catchment A	Junction		Swale 1A	Manhole	Adoptable
1.001	Swale 1A	Manhole	Adoptable	Swale 1.1	Junction	
1.002	Swale 1.1	Junction		Swale 1.2	Manhole	Adoptable
1.003	Swale 1.2	Manhole	Adoptable	Swale 2	Manhole	Adoptable
1.004	Swale 2	Manhole	Adoptable	Swale 2.1	Junction	

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

AUSEWAY 😜	PJA Civil Eng	gineering Li	mited			ft Page 3					
Pipeline Schedule											
LinkLengthSlope(m)(1:X)1.00537.00040.01.00635.00028.6	(mm) 500			US IL (m) 111.650 110.725	US Depth DS CL (m) (m) 0.000 111.72 0.250 111.00	(m) 5 110.725					
1.005 Sv		Node Type unction Manhole	MH Type Adoptable	D: Noc Swale 2 Catchm	de Type .2 Manhole	MH Type Adoptable					
			Manhole	<u>Schedule</u>							
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connections	Link	IL Dia (m) (mm)				
Catchment D	98.253	80.022	104.010			2.003 10	1.810 750 1.810 900				
Catchment A	13.925	56.994	117.250	1.300	1 0 •>0	1.010 10	1.810 1725				
Catchment B3	58.332	72.719	111.000	1.500	0 1 حر		5.95045019.500750				
Catchment E	77.143	83.971	107.500	1.500	1 0 1 1		9.500 <u>900</u> 96.000 <u>900</u>				
Catal mont C	00 701	02 702	100 500	1 500			16.000 <u>900</u>				
Catchment C	88.721	82.792	106.500	1.500			900 900 95.000 900				
Catchments F, I, G and J	57.010	39.556	108.525	2.300	~ ⁷						
Catchment H	69.595	51.442	108.000	2.300	0 1		6.225 750 95.700 750				
Catchment k	80.954	63.623	107.000	2.300			15.75075014.700750				
Catchment L	96.320	64.984	106.025	1.800			14.750 750 14.225 750				
1	105.085	80.027	103.000	2.500	1 0 1		14.250 750 10.500 1725				
			-		1•	-					

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Connection	S	Link	IL (m)	Dia (mm)
Swale 1A	24.494	59.275	116.500	1.000		1	1.000	115.500	450
					1				
						0	1.001	115.500	500
Swale 1.1	31.329	60.532	115.575	1.000		1	1.001	114.575	500
					1				
						0	1.002	114.575	500
Swale 1.2	38.399	61.973	114.650	1.000	\frown	1	1.002	113.650	500
					1				
Curele 2	45.624	C2 F4C	112 575	1 000		0	1.003	113.650	450
Swale 2	45.634	63.546	113.575	1.000	→ ⁰	1	1.003	112.575	450
					1				
Swale 2.1	49.186	65.155	112.650	1.000		0	1.004	112.575 111.650	500 500
Swale 2.1	49.100	05.155	112.050	1.000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	1.004	111.050	500
					1		4 9 9 5	444.650	
Swale 2.2	53.172	67.234	111.725	1.000		0	1.005	111.650 110.725	500 500
Sware 2.2	55.172	07.234	111.725	1.000	\checkmark	-	1.005	110.725	500
					1		1 000	440 705	750
						0	1.006	110.725	750
			Sim	ulation Se	ettings				
fall Methodo	ology FE	EH-22	An	alysis Spe	ed Normal	A	ddition	al Storage (m³⁄ha)
Summe		.000		Steady St				Discharge I	
Winte	er CV 1.	.000 D	rain Down	Time (mi	ns) 10080		Check	Discharge V	olume/
	1			orm Dura					
	15 30		30 360 40 480		960 1440	216		320	
	30	120 2		, , , , , , , , , , , , , , , , , , , ,	1110	200			
		Period Cl ars)	imate Chai (CC %)	nge Ad	ditional Area (A %)	Add	itional I (Q %)	low	
	(ye	100	(CC //)	40			(Q //)	0	
		100			0				
			tchmont A			ontr			
			tchment A		lydro-Brake [®] C	ontro	<u>ol</u>		
	Flap Va	<u>Node Ca</u> alve x	itchment A	Online H	lydro-Brake[®] C Objective	(HE		ise upstrea	m stora
-	nstream L	Node Ca alve x .ink 1.000	itchment A	<mark>. Online H</mark> Su	lydro-Brake[®] C Objective ımp Available	(HE √) Minim		
places Dow	nstream L	Node Ca alve x .ink 1.000 .ink x		<mark>Online H</mark> Su Pro	lydro-Brake[®] C Objective	(HE √) Minim -SHE-03	ise upstrea 40-7000-09	
places Dow Inv Desig	nstream L nstream L	Node Ca alve x .ink 1.000 .ink x (m) 116.00 (m) 0.950	00 M	<mark>. Online H</mark> Su Pro in Outlet	Iydro-Brake[®] C Objective Imp Available duct Number	(HE √ CTL) Minim -SHE-03 75		

Page 5

Node Catchment B3 Online Hydro-Brake® Control

<u> </u>	oue caterin		<u>control</u>							
Flap Valve Replaces Downstream Link Invert Level (m) Design Depth (m) Design Flow (l/s)	x x 109.500 1.200 80.0	Objective Sump Available Product Number Min Outlet Diameter (m) Min Node Diameter (mm)	 (HE) Minimise upstream storage ✓ CTL-SHE-0357-8000-1200-8000 0.375 2100 							
1	Node Catchr	nent E Online Hydro-Brake [®] C	<u>ontrol</u>							
Flap Valve Replaces Downstream Link Invert Level (m) Design Depth (m) Design Flow (l/s)	x x 106.000 1.200 60.5	Objective Sump Available Product Number Min Outlet Diameter (m) Min Node Diameter (mm)	 (HE) Minimise upstream storage ✓ CTL-SHE-0317-6050-1200-6050 0.375 2100 							
Node Catchment C Online Hydro-Brake [®] Control										
Flap Valve Replaces Downstream Link Invert Level (m) Design Depth (m) Design Flow (I/s)	x x 105.000 1.200 50.0	Objective Sump Available Product Number Min Outlet Diameter (m) Min Node Diameter (mm)	(HE) Minimise upstream storage ✓ CTL-SHE-0292-5000-1200-5000 0.375 1800							
No	de Catchme	ents F, I, G and J Online Orifice	<u>Control</u>							
Flap Valve Downstream Link Replaces Downstream Link	x 2.000 x	Invert Level (m) 106.225 Design Depth (m) 2.000 Design Flow (I/s) 330.0	Diameter (m) 0.375 Discharge Coefficient 0.600							
<u>1</u>	lode Catchr	nent D Online Hydro-Brake [®] C	ontrol							
Flap Valve Replaces Downstream Link Invert Level (m) Design Depth (m) Design Flow (l/s)	x x 101.810 1.900 0.1	Objective Sump Available Product Number Min Outlet Diameter (m) Min Node Diameter (mm)	(HE) Minimise upstream storage ✓ CTL-SHE-0012-1000-1900-1000 0.075 1200							
<u> </u>	Node Catchr	ment L Online Hydro-Brake [®] C	<u>ontrol</u>							
Flap Valve Downstream Link	x 2.003	Objective Sump Available	(HE) Minimise upstream storage √							

Fiap valve	Х	Objective	(HE) Minimise upstream storage
Downstream Link	2.003	Sump Available	\checkmark
Replaces Downstream Link	х	Product Number	CTL-SHE-0383-9700-1500-9700
Invert Level (m)	104.225	Min Outlet Diameter (m)	0.450
Design Depth (m)	1.500	Min Node Diameter (mm)	
Design Flow (I/s)	97.0		

Node Catchment H Online Hydro-Brake[®] Control

Flap Valve Downstream Link		Objective Sump Available	(HE) Minimise upstream storage √
Replaces Downstream Link	\checkmark	Product Number	CTL-SHE-0396-1085-2000-1085
Invert Level (m)	105.700	Min Outlet Diameter (m)	0.450
Design Depth (m)	2.000	Min Node Diameter (mm)	
Design Flow (I/s)	108.5		

Page 6

Node Catchment k Online Hydro-Brake[®] Control

	Flap ValvexObjective(HE) Minimise upstream storageDownstream Link2.002Sump Available√Replaces Downstream Link√Product NumberCTL-SHE-0388-1030-2000-1030Invert Level (m)104.700Min Outlet Diameter (m)0.450Design Depth (m)2.000Min Node Diameter (mm)Design Flow (I/s)103.0										
Node Swale 1.1 Online Orifice Control											
	Flap ValvexReplaces Downstream LinkxDiameter (m)0.225Downstream Link1.002Invert Level (m)114.575Discharge Coefficient0.600										
	Node Swale 1.1 Online Weir Control										
	Flap Valve xInvert Level (m)115.275Discharge Coefficient0.590Replaces Downstream Link xWidth (m)4.500										
	Node Swale 2.1 Online Orifice Control										
Flap Valve xInvert Level (m)111.650Discharge Coefficient0.600Replaces Downstream Link xDiameter (m)0.750											
Node Swale 2.1 Online Weir Control											
Flap ValvexInvert Level (m)112.350Discharge Coefficient0.590Replaces Downstream LinkxWidth (m)4.500											
	Node Catchment D Depth/Area Storage Structure										
	Base Inf Coefficient (m/hr)0.06768Safety Factor1.5Invert Level (m)101.810Side Inf Coefficient (m/hr)0.06768Porosity1.00Time to half empty (mins)600										
Depth (m) 0.000	Area Inf Area Depth Area Inf Area Depth Area Inf Area Depth Area Inf Area										
	Node Catchment A Depth/Area Storage Structure										
	Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)115.950Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)248										
	DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m²)(m²)0.0001510.00.01.3002465.00.0										
	Node Catchment B3 Depth/Area Storage Structure										
	Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)109.500Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)315										
	Depth Area Inf Area Depth Area Inf Area (m) (m²) (m²) (m²) (m²) 0.000 625.0 0.0 1.500 1615.0 0.0										

	SEWAY 🛟		ngineerin	g Linited	Network: Charlotte 04/11/202	Storm N Turner	etwork	Fage 7		
		No	de Catchr	<u>ment E Dept</u>	h/Area Stor	age Stru	<u>cture</u>			
	Base Inf Coefficien Side Inf Coefficien		.00000 .00000	Safety Fa Porc		Tim	Invert e to half emp	Level (m) ty (mins)	106.00 390	0
		Depth (m) 0.000	Area (m²) 1150.0	Inf Area (m ²) 0.0	Depth (m) 1.500	Area (m²) 2130.0	Inf Area (m²) 0.0			
				nent C Dept	I					
				-		1				-
	Base Inf Coefficien Side Inf Coefficien		.00000 .00000	Safety Fa Porc		Tim	Invert e to half emp	Level (m) oty (mins)	105.00 960	0
		Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)			
		0.000	2680.0	0.0	1.500	4305.0	0.0			
		<u>Node Ca</u>	tchments	F, I, G and J	Depth/Are	a Storag	<u>e Structure</u>			
	Base Inf Coefficien Side Inf Coefficien		.00000 .00000	Safety Fa Porc	ctor 2.0 osity 1.00	Tim	Invert e to half emp	Level (m) ty (mins)	106.22 260	5
Depth (m) 0.000	Area Inf Area (m²) (m²) 1215.0 0.0	Depth (m) 1.000	Area (m²) 1680.0	Inf Area (m²) 0.0	Depth (m) 1.001	Area (m²) 1850.0	Inf Area (m²) 0.0	Depth (m) 2.300	Area (m²) 3095.0	Inf Area (m²) 0.0
Node Catchment H Depth/Area Storage Structure										
	Base Inf Coefficien Side Inf Coefficien		.00000 .00000	Safety Fa Porc		Tim	Invert e to half emp	Level (m) ty (mins)	105.70 464	0
Depth (m) 0.000	Area Inf Area (m ²) (m ²) 520.0 0.0	Depth (m) 1.000	Area (m²) 970.0	Inf Area (m²) 0.0	Depth (m) 1.001 2	Area (m²) 2430.0	Inf Area (m ²) 0.0	Depth (m) 2.300	Area (m²) 3950.0	Inf Area (m²) 0.0
		No	de Catchr	nent k Dept	h/Area Stor	age Stru	cture			
	Base Inf Coefficien Side Inf Coefficien	,	.00000 .00000	Safety Fa Porc		Tim	Invert e to half emp	Level (m) ty (mins)	104.70 510	0
Depth (m) 0.000	Area Inf Area (m²) (m²) 165.0 0.0	Depth (m) 1.000	Area (m²) 490.0	Inf Area (m²) 0.0	(m)	Area (m²) 1715.0	Inf Area (m²) 0.0	Depth (m) 2.300	Area (m²) 3245.0	Inf Area (m²) 0.0
		No	de Catchi	<u>ment L Dept</u>	h/Area Stor	age Stru	<u>cture</u>			
	Base Inf Coefficien Side Inf Coefficien		.00000 .00000	Safety Fa Porc	ctor 2.0 osity 1.00	Tim	Invert e to half emp	Level (m) ity (mins)	104.22 420	5
Depth (m) 0.000	Area Inf Area (m ²) (m ²) 715.0 0.0	Depth (m) 0.800	Area (m²) 1175.0	Inf Area (m²) 0.0	Depth (m) 0.801	Area (m²) 1380.0	Inf Area (m ²) 0.0	Depth (m) 1.800	Area (m²) 2480.0	Inf Area (m ²) 0.0
				• •						

	PJA Civil Engineering Limited	File: 05920-WR-0525-P08 Surfa	Page 8
		Network: Storm Network	
CAUSEVVAI 😈		Charlotte Turner	
		04/11/2024	

Approval Settings

Node Size	\checkmark	Minimum Full Bore Velocity (m/s)	1.000
Node Losses	\checkmark	Maximum Full Bore Velocity (m/s)	3.000
Link Size	\checkmark	Proportional Velocity	\checkmark
Minimum Diameter (mm)	150	Return Period (years)	2
Link Length	\checkmark	Minimum Proportional Velocity (m/s)	0.750
Maximum Length (m)	100.000	Maximum Proportional Velocity (m/s)	3.000
Coordinates	\checkmark	Surcharged Depth	\checkmark
Accuracy (m)	1.000	Return Period (years)	2
Crossings	\checkmark	Maximum Surcharged Depth (m)	0.100
Cover Depth	\checkmark	Flooding	\checkmark
Minimum Cover Depth (m)	1.200	Return Period (years)	30
Maximum Cover Depth (m)	3.000	Time to Half Empty	\checkmark
Backdrops	\checkmark	Return Period (years)	30
Minimum Backdrop Height (m)	0.200	Discharge Rates	\checkmark
Maximum Backdrop Height (m)	1.500	Discharge Volume	\checkmark

Full Bore Velocity \checkmark 100 year 360 minute (m³)

Page 9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.98%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
2880 minute winter	Node Catchment D	(mins) 3180	(m) 103.706	(m) 1.896	(I/s) 191.8	Vol (m³) 4824.4480	(m³) 0.0000	SURCHARGED
240 minute summer	Catchment A	212	116.909	0.959	625.3	1785.7270	0.0000	SURCHARGED
720 minute winter	Catchment B3	705	110.698	1.198	161.5	1221.7630	0.0000	SURCHARGED
1440 minute winter	Catchment E	1410	107.191	1.191	101.2	1832.6190	0.0000	SURCHARGED
2160 minute winter	Catchment C	2220	106.199	1.199	132.5	3991.3240	0.0000	SURCHARGED
180 minute summer	Catchments F, I, G and J	136	108.222	1.997	1957.0	3767.2970	0.0000	SURCHARGED
480 minute winter	Catchment H	504	107.591	1.891	357.9	3374.2180	0.0000	SURCHARGED
1440 minute winter	Catchment k	1470	106.604	1.904	171.5	2358.0200	0.0000	SURCHARGED
2160 minute winter	Catchment L	2340	105.691	1.466	118.2	1918.5160	0.0000	SURCHARGED
2880 minute winter	1	3180	100.500	0.000	0.1	0.0000	0.0000	ОК
120 minute winter	Swale 1A	270	115.602	0.102	70.0	0.0000	0.0000	ОК
1440 minute summer	Swale 1.1	900	115.126	0.551	70.0	0.0000	0.0000	ОК
600 minute winter	Swale 1.2	645	113.875	0.225	69.9	0.0000	0.0000	ОК
15 minute summer	Swale 2	10	112.859	0.284	634.4	0.0000	0.0000	ОК
15 minute summer	Swale 2.1	11	112.352	0.701	627.7	0.0000	0.0000	ОК
15 minute summer	Swale 2.2	12	111.222	0.497	582.8	0.0000	0.0000	ОК

	Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
	(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
28	80 minute winter	Catchment D	1.010	1	0.1	0.000	0.000	0.0020	21.0
60	minute summer	Catchment D	Infiltration		132.9				
12	0 minute summer	Catchment A	1.000	Swale 1A	70.0	2.039	0.194	1.2434	
60	minute winter	Catchment B3	1.007	Catchment E	80.0	1.562	0.019	18.7873	
14	40 minute summer	Catchment E	1.008	Catchment C	150.0	0.461	0.041	11.3209	
36	0 minute winter	Catchment C	1.009	Catchment D	49.9	1.749	0.007	8.1077	
30	minute summer	Catchments F, I, G and J	2.000	Catchment H	340.1	1.685	0.190	11.0030	
30	minute winter	Catchment H	Hydro-Brake®	Catchment k	108.3				
14	40 minute summer	Catchment k	Hydro-Brake [®]	Catchment L	102.9				
24	0 minute winter	Catchment L	2.003	Catchment D	97.1	1.292	0.027	7.0039	
12	0 minute winter	Swale 1A	1.001	Swale 1.1	70.0	0.250	0.005	29.1904	
14	40 minute summer	Swale 1.1	1.002	Swale 1.2	70.0	0.381	0.005	7.4559	
14	40 minute summer	Swale 1.2	1.003	Swale 2	70.0	1.322	0.418	2.3921	
15	minute summer	Swale 2	1.004	Swale 2.1	627.7	0.709	0.048	51.3402	
15	minute summer	Swale 2.1	1.005	Swale 2.2	582.8	0.800	0.045	30.9692	
15	minute summer	Swale 2.2	1.006	Catchment B3	575.5	2.176	0.744	10.3743	
		0.110 2.2	2.000	04101110111011100	0,010		••••		

Appendix H Thames Water Developer Enquiry

Miss Shannon Warr Brookbanks Consulting Ltd 6150 Knights Court Solihull Parkway Birmingham Business Park B37 7WY

05 April 2024

Pre-planning enquiry: Capacity concerns

Site: Land At St Albans, St. Albans, AL3 6JE – (nearest postcode)

Dear Miss Warr,

Thank you for Pre-planning application for the construction of 683 residential dwellings, 278 residential flats, 14500sqm of Local Centre, 80 bed Care Home, 444 No. of max capacity student Primary School & 8000sqm Retirement Living Facility.

We have completed the assessment of the foul water flows based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

We've assessed your foul proposals and concluded that our sewerage network **will not** have enough capacity for full development at this time.

Foul Water

Proposed foul water to discharge via pumped flow at **21.19 litres/sec** into an existing manhole chamber referenced TL1409 **8702** on an existing 225mm foul water sewer.

Surface Water

Site is to follow SuDS therefore no direct or indirect discharge of surface water into a Thames Water sewer.

In order to ensure we make the appropriate upgrades – or 'off-site reinforcement' – to serve the remainder of your development, we'll need to carry out modelling work, design a solution and build the necessary improvements. This work is done at our cost.

Once we've begun modelling, we may need to contact you to discuss changing the connection point for capacity reasons. Please note that we'll pay the cost of covering any extra distance if the connection needs to be made at a point further away than the nearest practicable point of at least the same diameter.

How long could modelling and reinforcement take?

Typical timescales for a development of your size are:

Modelling: 8 months Design: 6 months Construction: 6 months Total: 20 months

If the time you're likely to take from planning and construction through to first occupancy is longer than this, we'll be able to carry out the necessary upgrades in time for your development. If it's shorter, please contact me on the number below to discuss the timing of our activities.

Surface Water Hierarchy

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

The disposal hierarchy being:

- 1. store rainwater for later use.
- 2. use infiltration techniques where possible.
- 3. attenuate rainwater in ponds or open water features for gradual release.
- 4. attenuate rainwater by storing in tanks or sealed water features for gradual release.
- 5. discharge rainwater direct to a watercourse.
- 6. discharge rainwater to a surface water sewer/drain.
- 7. discharge rainwater to the combined sewer.
- 8. discharge rainwater to the foul sewer

Where connection to the public sewerage network is still required to manage surface water flows we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

Please see the attached 'Planning your wastewater' leaflet for additional information.

What do I need to do next?

If you've satisfied the points above, then you should compare your own timeline with the typical timescales we've suggested for our activities. If the time you're likely to take from planning and construction through to first occupancy is **more** than the total time we're likely to take, we'll be able to carry out the necessary upgrades in time for your development.

If it's **less** than this, you might want to ask us to start modelling earlier – in which case we'll require you to underwrite the cost, as noted above. - *(We currently do not provide this service)*

What do you need to tell us before we start modelling?

We will only carry out modelling once we're confident that your development will proceed. In order to have this confidence, we'll need to know that you **own the land and have either outline or full planning permission**. Please email this information to us as soon as you have it.

If the modelling shows we need to carry out reinforcement work, then before we start construction we'll need you to supply us with notification that you've confirmed your F10 – Notification of construction project - submission to the Health and Safety Executive.

If you've any further questions, please do not hesitate to contact me.

Yours sincerely,

hilloma **Colins Akemche**

Clean & Waste Pre-Planning Engineer Adoption Team - Service Delivery

Thames Water - Developer Services - Ground Floor West - Clearwater Court - Vastern Road Reading -Berkshire - RG1 8DB - Tel: 0800 009 3921 Email: <u>developer.services@thameswater.co.uk</u> - Web: <u>www.developerservices.co.uk</u>

Appendix IFlow Exceedance Plan

KEY:		NOTES
	Site Boundary	These drawings have been produced with reference to the CDM Regulations 2015. Please note that these are
	Indicative Location of Attenuation Basin with	pre-construction phase drawings and should be subject to further design risk management as required in accordance with Regulation 9
Cond Cont	3m maintenance strip	
	Indicative Location of	1. This Drawing is not to be reproduced in any part or form without the consent of PJA Civil Engineering Ltd.
	Infiltration Basin with 3m	All copyright reserved.
	maintenance strip	2. No assessment of earthworks has been undertaken at
	Location of Infiltration	this stage.
	Testing Location IT04	3. No assessment of surcharged outfall has been
		undertaken at this stage. 4. No utilities and arbor-cultural consideration has been
	Indicative Location of Low Flow Channel	undertaken at this stage.
	Flow Channel	5. Drawing should be read in conjunction with all other
	Indicative Location of	relevant scheme drawings.
>	Conveyance Feature	6. Drawing Includes:
		6.1. Strategic Landscaping Plan provided by Define in
	Indicative Location of	December 2024 (Drawing No: DE_565_Hallam St Albans Strategic Landscape Plan).
· · · ·	Headwall	6.2. Topographic Survey produced by Interlock
	Indicative Location of Railway	Surveys dated September 2023 (Ref. 190296)
	Line	6.3. Tree Survey provided by FPCR dated December
		2023 (8575-T-01)
· · · · · · · · · · · · · · · · · · ·	Indicative Easement of 21m	6.4. An infiltration rate of 1.88×10^{-5} m/s from location
	from the Railway Line (TBC)	IT04 was used from the 2024 Geo Environmental
	Indicative Location of Proposed	Group Infiltration Testing. 7. For water drainage strategy information see drawing
	Surface Water Sewer	reference (05920-WR-A-0525-P09).
		8. Further consideration of utilities, arboricultural and
	Indicative Surface Water Flow Route	ecological constraints should be undertaken prior to
	Indicative Location of Proposed Foul	detailed design.
	Water Pumping Station with	 Indicative flow exceedance plan based on masterplanning at the time of production and
	and Storage Compound	impermeable areas may result in changes to the
-		drainage strategy.
	Indicative Location of Proposed Surface	10. Further ground investigation to confirm infiltration
	Water Flow Routing Channel (0.5m deep with 1:3 side slopes - 3.5m wide)	rates, seasonal groundwater levels and detail of the underlying chalk solubility is required.
	Indicative Location of Proposed Surface	RISK ITEMS:
	Water Swale (1.0m deep, 0.5m base	
-	width with 1:4 side slopes)	Risk Item 1: Indicative Surface Water Drainage Strategy is subject to proposed development hydraulic modelling to
-	Indicative Location of Proposed Orifice	refine surface water flood extents across the Site.
0	Plate	
		Risk Item 2: Indicative Surface Water Drainage Strategy is
0	Indicative Location of Proposed Flow Control	subject to a detailed earthworks and levels assessment.
		1

P0	04/12/2024	DRAFT	JJG
REV	DATE	REVISION NOTE	ΒY
	JA	Seven House - High Street Longbridge - Birmingham B31 2UQ - Tel: 0121 475 02 Birmingham - Bristol Exeter - London - Reading pja.co.uk	.34
CLIEN	٦T		
Hallar PROJI		agement Limited and St Albans Scho	ol

#